Package ‘fastpolicytree’

June 24, 2025
Type Package

Title Constructs Policy Trees from Covariate and Reward Data
Version 1.0

Description Constructs optimal policy trees which provide a rule-based treatment prescription policy.
Input is covariate and reward data, where, typically, the rewards will be doubly robust reward es-
timates.

This package aims to construct optimal policy trees more quickly than the existing "poli-
cytree' package and

is intended to be used alongside that package.

For more details see Cussens, Hatam-

yar, Shah and Kreif (2025) <doi:10.48550/arXiv.2506.15435>.

URL https://github.com/jcussens/tailoring
Suggests policytree

Imports Rcpp (>=1.0.7)

LinkingTo Rcpp

RoxygenNote 7.3.2

Encoding UTF-8

License GPL (>= 3)

NeedsCompilation yes

Author James Cussens [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1363-2336>),
Julia Hatamyar [ctb],
Vishalie Shah [ctb],
University of Bristol [cph],
MRC [fnd]

Maintainer James Cussens <james.cussens@bristol.ac.uk>
Repository CRAN
Date/Publication 2025-06-24 08:50:06 UTC

https://doi.org/10.48550/arXiv.2506.15435
https://github.com/jcussens/tailoring
https://orcid.org/0000-0002-1363-2336

2 fastpolicytree

Contents
fastpolicytree L 2
githash oL 3
Index 5
fastpolicytree Construct an optimal policy tree from covariate and reward data
Description

This function accepts almost the same input and generates the same type of output as the policy_tree
function in the policytree package. The only difference is that this function has no ’split.step’
argument (since it is effectively hard-coded to the value 1).

Usage
fastpolicytree(
X,
Gamma,
depth = 3,

min.node.size = 1,

strategy.datatype = 2,
strategy.find.reward.ub = FALSE,
strategy.find.dummy.split.reward = FALSE,
strategy.use.last.rewards = TRUE,
strategy.use.cutoffs = FALSE,
strategy.use.cache = TRUE,
strategy.exploitbinaryvars = TRUE

)

Arguments
X The covariates used. Dimension N * p where p is the number of features.
Gamma The rewards for each action. Dimension IV x d where d is the number of actions.
depth The depth of the fitted tree. Default is 3.

min.node.size An integer indicating the smallest terminal node size permitted. Default is 1.
strategy.datatype
If set to O policytree style sorted sets are used to represent datasets during solv-
ing. If set to 1 then unsorted sets are used which are sorted on demand’. If set
to to 2 then the choice of representation is decided automatically. Default is 2
(choice is automatically made).

strategy.find.reward.ub
If TRUE upper bounds on rewards are computed. Default is FALSE

githash

strategy.

strategy.

strategy.

strategy.

strategy.

Value

find.dummy.split.reward
If TRUE then the reward for a dummy split (where the left split has no data-
points) is computed. Default is FALSE.
use.last.rewards
If TRUE an upper bound on the reward for a split is computed from the reward
for the most recent split value for the current covariate. Default is TRUE
use.cutoffs
If TRUE then tree finding is aborted if it can be deduced that the reward for the
tree is beaten by some existing tree. Default is FALSE
use.cache
If TRUE a cache of optimal trees for (sub-)datasets is used. Default is TRUE
exploitbinaryvars
If TRUE then covariates with only 2 values are treated specially. Default is
TRUE

A policy_tree object.

Examples

X <- data.frame(

X1=c(-0.32, 0.16, 0.34, 1.24, 0.22, 0.45, 1.48, 0.65,-0.93,-1.11),
X2=c(-0.58, 0.90,-0.22, 1.54,-0.57,-1.08,-1.42,-1.98,-0.02, 0.05),
X3=c(0.70,-1.49, 0.36,-0.05,-0.14, 1.57,-0.18,-1.98,-1.77,-1.25),

X4=c (0. 21

, ©0.34, 0.60,-0.05,-0.66,-0.69, 0.52, 0.31,-0.03, 1.09),

X5=c(0.16, 0.96,-1.07,-0.97, 2.02,-0.43,-0.79,-2.08, 1.21, 0.39))

Gamma <-

data.frame(

control=c(0.8502363,-1.4950411,1.9608062,0.7487925,2.9718517,
0.8952429,-0.2563680,5.9945581,-1.8485703,-1.2840477) ,

treat=c(-

1.487861
tree3 <-
tree3
tree2 <-
tree2

2.91607259,-2.25464535, 0.28214637,-0.17284650,-0.09480810,
25,2.08600119,-2.05283394,0.72903608,-0.04416392))
fastpolicytree(X,Gamma)

fastpolicytree(X, Gamma,depth=2)

to get a human-readable display of the trees use the
policytree package...

#library(policytree)

#print(tree3)

#print(tree2)

githash

Returns git hash for compiled C code

Description

Returns git hash for compiled C code

Usage
githash()

Value

A string which is the relevant githash

githash

Index

fastpolicytree, 2

githash, 3

	fastpolicytree
	githash
	Index

