adegraphics
packageThe adegraphics
package (Siberchicot et al. 2017) is a complete reimplementation of the graphical functionalities of the ade4
package (Dray and Dufour 2007). The package has been initially designed to improve the representation of the outputs of multivariate analyses performed with ade4
but as its graphical functionalities are very general, they can be used for other purposes.
The adegraphics
package provides a flexible environment to produce, edit and manipulate graphs. We adopted an object oriented approach (a graph is an object) using S4
classes and methods and used the visualization system provided by the lattice
(Sarkar 2008) and grid
(Murrell 2005) packages. In adegraphics
, graphs are R objects that can be edited, stored, combined, saved, removed, etc.
Note that we tried to facilitate the handling of adegraphics
by ade4
users. Hence, the name of functions and parameters has been preserved in many cases. The main changes are listed in the appendix of this vignette so that it should be quite easy to use adegraphics
. However, several new functionalities (graphical parameters, creation and manipulation of graphical objects, etc.) are now available and detailed in this vignette.
The adelist mailing list can be used to send questions and/or comments on adegraphics
(see https://listes.univ-lyon1.fr/sympa/info/adelist)
In adegraphics
, a user-level function produces a plot that is stored (and returned) as an object. The class architecture of the objects created by adegraphics
functions is described in Figure 1.
This class management highlights a hierarchy with two parent classes:
ADEg
for simple graphs. It contains the display of a single data set using only one kind of representation (e.g., arrows, points, lines, etc.)
ADEgS
for multiple graphs. It contains a collection of at least two simple graphs (ADEg
, trellis
or ADEgS
)
The ADEg
class has five child classes which are also subdivided in several child classes. Each of these five child classes is dedicated for a particular graphical data representation:
ADEg.S1
: unidimensional graph of a numeric score
ADEg.S2
: bidimensional graph of xy coordinates (matrix
or data.frame
object)
ADEg.C1
: bidimensional graph of a numeric score (bar chart or curve)
ADEg.T
: heat map-like representation of a data table (matrix
, data.frame
, dist
or table
object)
ADEg.Tr
: ternary plot of xyz coordinates (matrix
or data.frame
object)
The ADEg
class and its five child classes are virtual: it is not allowed to create object belonging to these classes. Users can only create objects belonging to child classes by calls to user functions (see the User functions section).
ADEg
object)In the adegraphics
package, a graph is created by a call to a user function and stored as an R object. These functions allow to display the raw data but also the outputs of a multivariate analysis. The following sections describe the different graphical functions available in the package.
Several user functions are available to create a simple graph (stored as an ADEg
object in R). Each function creates an object of a given class (see Figure 1). Table 1 lists the different functions, their corresponding classes and a short description. The ade4
users would not be lost: many functions have kept their names in adegraphics
. The main changes are listed in Table 2.
Table 1: Graphical functions available in adegraphics
Function | Class of the returned object | Description |
---|---|---|
s1d.barchart |
C1.barchart |
1-D plot of a numeric score by bars |
s1d.curve |
C1.curve |
1-D plot of a numeric score linked by curves |
s1d.curves |
C1.curves |
1-D plot of multiple scores linked by curves |
s1d.density |
C1.density |
1-D plot of a numeric score by density curves |
s1d.dotplot |
C1.dotplot |
1-D plot of a numeric score by dots |
s1d.gauss |
C1.gauss |
1-D plot of a numeric score by Gaussian curves |
s1d.hist |
C1.hist |
1-D plot of a numeric score by bars |
s1d.interval |
C1.interval |
1-D plot of the interval between two numeric scores |
s1d.boxplot |
S1.boxplot |
1-D box plot of a numeric score partitioned in classes |
s1d.class |
S1.class |
1-D plot of a numeric score partitioned in classes |
s1d.distri |
S1.distri |
1-D plot of a numeric score by means/tandard deviations computed using an external table of weights |
s1d.label |
S1.label |
1-D plot of a numeric score with labels |
s1d.match |
S1.match |
1-D plot of the matching between two numeric scores |
s.arrow |
S2.arrow |
2-D scatter plot with arrows |
s.class |
S2.class |
2-D scatter plot with a partition in classes |
s.corcircle |
S2.corcircle |
Correlation circle |
s.density |
S2.density |
2-D scatter plot with kernel density estimation |
s.distri |
S2.distri |
2-D scatter plot with means/standard deviations computed using an external table of weights |
s.image |
S2.image |
2-D scatter plot with loess estimation of an additional numeric score |
s.label |
S2.label |
2-D scatter plot with labels |
s.logo |
S2.logo |
2-D scatter plot with logos (pixmap objects) |
s.match |
S2.match |
2-D scatter plot of the matching between two sets of coordinates |
s.Spatial |
S2.label |
Mapping of a Spatial* object |
s.traject |
S2.traject |
2-D scatter plot with trajectories |
s.value |
S2.value |
2-D scatter plot with proportional symbols |
table.image |
T.image |
Heat map-like representation with colored cells |
table.value |
T.value or T.cont |
Heat map-like representation with proportional symbols |
triangle.class |
Tr.class |
Ternary plot with a partition in classes |
triangle.label |
Tr.label |
Ternary plot with labels |
triangle.match |
Tr.match |
Ternary plot of the matching between two sets of coordinates |
triangle.traject |
Tr.match |
Ternary plot with trajectories |
Table 2: Changes in functions names between ade4
and adegraphics
Function in ade4 |
Equivalence in adegraphics |
---|---|
table.cont , table.dist , table.value |
table.value 1 |
table.paint |
table.image |
sco.boxplot |
s1d.boxplot |
sco.class |
s1d.class |
sco.distri |
s1d.distri |
sco.gauss |
s1d.gauss |
sco.label |
s1d.label |
sco.match |
s1d.match |
sco.quant |
no equivalence |
s.chull |
s.class 2 |
s.kde2d |
s.density |
s.match.class |
superposition of s.match and s.class |
triangle.biplot |
triangle.match |
triangle.plot |
triangle.label |
s.multinom |
triangle.multinom |
The list of arguments of a function are given by the args
function.
library(ade4)
library(adegraphics)
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
## Registered S3 methods overwritten by 'adegraphics':
## method from
## biplot.dudi ade4
## kplot.foucart ade4
## kplot.mcoa ade4
## kplot.mfa ade4
## kplot.pta ade4
## kplot.sepan ade4
## kplot.statis ade4
## scatter.coa ade4
## scatter.dudi ade4
## scatter.nipals ade4
## scatter.pco ade4
## score.acm ade4
## score.mix ade4
## score.pca ade4
## screeplot.dudi ade4
##
## Attachement du package : 'adegraphics'
## Les objets suivants sont masqués depuis 'package:ade4':
##
## kplotsepan.coa, s.arrow, s.class, s.corcircle, s.distri, s.image,
## s.label, s.logo, s.match, s.traject, s.value, table.value,
## triangle.class
args(s.label)
## function (dfxy, labels = rownames(dfxy), xax = 1, yax = 2, facets = NULL,
## plot = TRUE, storeData = TRUE, add = FALSE, pos = -1, ...)
## NULL
Some arguments are very general and present in all user functions:
plot
: a logical value indicating if the graph should be displayed
storeData
: a logical value indicating if the data should be stored in the returned object. If FALSE
, only the names of the data are stored. This allows to reduce the size of the returned object but it implies that the data should not be modified in the environment to plot again the graph.
add
: a logical value indicating if the graph should be superposed on the graph already displayed in the current device (it replaces the argument add.plot
in ade4
).
pos
: an integer indicating the position of the environment where the data are stored, relative to the environment where the function is called. Useful only if storeData
is FALSE
.
…
: additional graphical parameters (see below)
Some other arguments influence the graphical outputs and they are thus specific to the type of produced graph. Figure 2 summarizes some of these graphical parameters available for the different functions. We only reported the parameters stored in the g.args
slot of the returned object (see the Parameters in g.args
section).
The ade4
users would note that the names of some arguments have been modified in adegraphics
. The Appendix gives a full list of these modifications.
A call to a graphical function (see the User functions section) returns an ADEg
object. Each object is defined by a number of slots and several methods are associated to this class. Let us consider the olympic
data set available in the ade4
package. A principal component analysis (PCA) is applied on the olympic$tab
table that contains the results for 33 participating athletes at the 1988 summer olympic games:
data(olympic)
dudi.pca(olympic$tab, scannf = FALSE) pca1 <-
The barplot of eigenvalues is then drawn and stored in g1
:
s1d.barchart(pca1$eig, p1d.horizontal = F, ppolygons.col = "white") g1 <-
The class of the g1
object is C1.barchart
which extends the ADEg
class:
class(g1)
## [1] "C1.barchart"
## attr(,"package")
## [1] "adegraphics"
showClass("C1.barchart")
## Class "C1.barchart" [package "adegraphics"]
##
## Slots:
##
## Name: data trellis.par adeg.par lattice.call g.args
## Class: list list list list list
##
## Name: stats s.misc Call
## Class: list list call
##
## Extends:
## Class "ADEg.C1", directly
## Class "ADEg", by class "ADEg.C1", distance 2
## Class "ADEgORtrellis", by class "ADEg.C1", distance 3
## Class "ADEgORADEgSORtrellis", by class "ADEg.C1", distance 3
This object contains different slots:
slotNames(g1)
## [1] "data" "trellis.par" "adeg.par" "lattice.call" "g.args"
## [6] "stats" "s.misc" "Call"
These slots are defined for each ADEg
object and contain different types of information. The package adegraphics
uses the capabilities of the lattice
package to display a graph (by generating a trellis
object). Hence, several slots contain information that will be passed in the call to the lattice
functions:
data
: a list containing information about the data.
trellis.par
: a list of graphical parameters that are directly passed to the lattice
functions using the par.settings
argument (see the Parameters in trellis.par
section).
adeg.par
: a list of graphical parameters defined in adegraphics
. The list of parameters can be obtained using the adegpar
function (see the Parameters in adeg.par
section).
lattice.call
: a list of two elements containing the information required to create the trellis
object: graphictype
(the name of the lattice
functions that should be used) and arguments
(the list of parameter values required to obtain the trellis
object).
g.args
: a list containing at least the different values of the graphical arguments described in Figure 2 (see the Parameters in g.args
section).
stats
: a list of internal preliminary computations performed to display the graph.
s.misc
: a list of other internal parameters.
Call
: an object of class call
containing the matched call.
These different slots can be extracted using the @
operator:
@data g1
## $score
## [1] 3.4182381 2.6063931 0.9432964 0.8780212 0.5566267 0.4912275 0.4305952
## [8] 0.3067981 0.2669494 0.1018542
##
## $at
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $frame
## [1] 29
##
## $storeData
## [1] TRUE
All these slots are automatically filled during the object creation. The trellis.par
, adeg.par
and g.args
can also be modified a posteriori using the update
method (see the Customizing a graph section). This allows to customize graphs after their creation.
We consider the correlation circle that depicts the correlation between PCA axes and the results for each event:
s.corcircle(pca1$co) g2 <-
class(g2)
## [1] "S2.corcircle"
## attr(,"package")
## [1] "adegraphics"
@g.args g2
## $fullcircle
## [1] TRUE
##
## $xlim
## [1] -1.2 1.2
##
## $ylim
## [1] -1.2 1.2
##
## $scales
## $scales$draw
## [1] FALSE
The argument fullcircle
can be updated a posteriori so that the original object is modified:
update(g2, fullcircle = FALSE)
@g.args g2
## $fullcircle
## [1] FALSE
##
## $xlim
## [1] -0.8815395 0.9544397
##
## $ylim
## [1] -0.6344523 1.2015270
##
## $scales
## $scales$draw
## [1] FALSE
Several other methods have been defined for the ADEg
class allowing to extract information, modify or combine objects:
getcall
, getlatticecall
and getstats
: these accessor methods return respectively the Call
, the lattice.call
and the stats
slots.
getparameters
: this method returns the trellis.par
and/or the adeg.par
slots.
show
, print
and plot
: these methods display the ADEg
object in the current device or in a new one.
gettrellis
: this method returns the ADEg
object as a trellis
object. It can then be exploited using the lattice
and latticeExtra
packages.
superpose
, +
and add.ADEg
: these methods superpose two ADEg
graphs. It returns a multiple graph object of class ADEgS
(see the The basic methods for superposition, juxtaposition and insertion section).
insert
: this method inserts an ADEg
graph in an existing one or in the current device. It returns an ADEgS
object (see the The basic methods for superposition, juxtaposition and insertion section).
cbindADEg
, rbindADEg
: these methods combine several ADEg
graphs. It returns an ADEgS
object (see the The basic methods for superposition, juxtaposition and insertion section).
update
: this method modifies the graphical parameters after the ADEg
creation. It updates the current display and returns the modified ADEg
(see the Customizing a graph section).
For instance:
getcall(g1) ## equivalent to g1@Call
## s1d.barchart(score = pca1$eig, p1d.horizontal = F, ppolygons.col = "white")
A biplot-like graph can be obtained using the superpose
method. The result is a multiple graph:
s.label(pca1$li)
g3 <- s.arrow(5 * pca1$c1, add = TRUE) g4 <-
class(g4)
## [1] "ADEgS"
## attr(,"package")
## [1] "adegraphics"
In addition, some object classes have specific methods. For instance, a zoom
method is available for ADEg.S1
and ADEg.S2
classes. For the ADEg.S2
class, the method addhist
(see the The basic methods for superposition, juxtaposition and insertion section) decorates a 2-D graph by adding marginal distributions as histograms and density lines (this method replaces and extends the s.hist
function of ade4
).
zoom(g3, zoom = 2, center = c(2, -2))
ADEgS
object)The adegraphics
package provides class ADEgS
to manage easily the combination of several graphs. This class allows to deal with the superposition, insertion or juxtaposition of several graphs in a single object. An object of this class is a list containing several graphical objects and information about their positioning. Different ways to generate ADEgS
objects are described below.
The class ADEgS
is used to store multiple graphs. Different slots are associated to this class (use the symbol @
to extract information):
ADEglist
: a list of graphs stored as trellis
, ADEg
and/or ADEgS
objects.
positions
: a matrix containing the positions of the graphs. It has four columns and as many rows as the number of graphical objects in the ADEglist
slot. For each graph (i.e. row), it contains the coordinates of the bottom-left and top-right corners in npc
units (i.e. normalized parent coordinates varying between 0 and 1).
add
: a square binary matrix with as many rows and columns as the number of graphical objects in the ADEglist
slot. It allows to manage the superposition of graphs: the value at the i-th row and j-th column is equal to 1 if the j-th graphical object is superposed on the i-th. Otherwise, this value is equal to 0.
Call
: an object of class call
containing the matched call.
Several methods have been implemented to obtain information, edit or modify ADEgS
objects. Several methods are inspired from the management of list
in R:
[
, [[
and $
: these methods extract one or more elements from the ADEgS
object.
getpositions
, getgraphics
and getcall
: these methods return the positions
, the ADEglist
and the Call
slots, respectively.
names
and length
: these methods return the names and number of graphs contained in the object.
[[<-
and names<-
: these methods replace a graph or its name in an ADEgS
object (acts on the ADEglist
slot).
show
, plot
and print
: these methods display the ADEgS
object in the current device or in a new one.
superpose
and +
: these methods superpose two graphs. It returns a multiple graph object of class ADEgS
(see the The basic methods for superposition, juxtaposition and insertion section).
insert
: this method inserts a graph in an existing one or in the current device. It returns a multiple graph object of class ADEgS
(see the The basic methods for superposition, juxtaposition and insertion section).
cbindADEg
, rbindADEg
: these methods combine several graphs. It returns an ADEgS
object (see the The basic methods for superposition, juxtaposition and insertion section).
update
: this method modifies the names and/or the positions
of the graphs contained in an ADEgS
object. It updates the current display and returns the modified ADEgS
.
We will show in the next sections how these methods can be used to deal with ADEgS
objects.
ADEgS
object by handThe ADEgS
objects can be created by easy manipulation of several simple graphs. Some methods (e.g., insert
, superpose
) can be used to create a compilation of graphs by hand.
The functions superpose
, +
and add.ADEg
allow the superposition of an ADEg
/ADEgS
object on an ADEg
/ADEgS
object.
The vector olympic$score
contains the total number of points computed for each participant. This vector is used to generate a factor
partitioning the participants in two groups according to their final result (more or less than 8000 points):
factor(olympic$score < 8000, labels = c("MT8000", "LT8000")) fac.score <-
These two groups can be represented on the PCA factorial map using the s.class
function:
s.class(pca1$li, fac.score, col = c("red", "blue"), chullSize = 1, ellipseSize = 0,
g5 <-plabels.cex = 2, pbackground.col = "grey85", paxes.draw = TRUE)
The graph with the labels (object g3
) can then be superposed on this one:
superpose(g5, g3, plot = TRUE) ## equivalent to g5 + g3 g6 <-
class(g6)
## [1] "ADEgS"
## attr(,"package")
## [1] "adegraphics"
In the case of a superposition, the graphical parameters (e.g., background and limits) of the first graph (the one below) are used as a reference and applied to the second one (the one above). Note that it is also possible to use the add = TRUE
argument in the call of a simple user function (functions described in Table 1) to perform a superposition. The graph g6
can also be obtained by:
g5s.label(pca1$li, add = TRUE)
The functions cbindADEg
and rbindADEg
allows to combine several graphical objects (ADEg
, ADEgS
or trellis
) by rows or by columns. The new created ADEgS
contains the list of the reduced graphs:
rbindADEg(cbindADEg(g2, g3), cbindADEg(g5, g6), plot = TRUE)
The function insert
allows the insertion of a graphical object on another one (ADEg
or ADEgS
). It takes the position of the inserted graph as an argument:
insert(g2, g6, posi = c(0.65, 0.65, 0.95, 0.95)) g7 <-
class(g7)
## [1] "ADEgS"
## attr(,"package")
## [1] "adegraphics"
The different methods associated to the ADEgS
class allow to obtain information and to modify the multiple graph:
length(g7)
## [1] 3
names(g7)
## [1] "g1" "g2" "X"
names(g7) <- c("chulls", "labels", "cor")
class(g7[1])
## [1] "ADEgS"
## attr(,"package")
## [1] "adegraphics"
class(g7[[1]])
## [1] "S2.class"
## attr(,"package")
## [1] "adegraphics"
class(g7$chulls)
## [1] "S2.class"
## attr(,"package")
## [1] "adegraphics"
The multiple graph contains three simple graphs. It can be easily updated. For instance, the size of the inserted graph can be modified:
getpositions(g7)
pos.mat <- pos.mat
## [,1] [,2] [,3] [,4]
## 0.00 0.00 1.00 1.00
## 0.00 0.00 1.00 1.00
## positions 0.65 0.65 0.95 0.95
3,] <- c(0.1, 0.7, 0.3, 0.9)
pos.mat[update(g7, positions = pos.mat)
The graphs themselves can be modified, without affecting the global structure of the ADEgS
object. Here, we replace the correlation circle by the barplot of eigenvalues:
3]] <- g1
g7[[ g7
The addhist
method adds univariate marginal distributions around an ADEg.S2
and returns an ADEgS
object:
addhist(g3)
More examples are available in the help page by typing example(superpose)
, example(insert)
, example(add.ADEg)
and example(addhist)
in the R session.
ADEgS
functionThe ADEgS
function provides the most elementary and flexible way to create an ADEgS
object. The different arguments of the function are:
adeglist
: a list of several trellis
, ADEg
and/or ADEgS
objects.
positions
: a matrix with four columns and as many rows as the number of graphical objects in the ADEglist
slot. For each subgraph, i.e. in each row, the coordinates of the top-right and the bottom-left hand corners are given in npc
units (i.e., normalized parent coordinates varying from 0 to 1).
layout
: an alternative way to specify the positions of graphs. It could be a vector of length 2 indicating the number of rows and columns used to split the device (similar to mfrow
parameter in basic graphs). It could also be a matrix specifying the location of the graphs: each value in this matrix should be 0 or a positive integer (similar to layout
function for basic graphs).
add
: a square matrix with as many rows and columns as the number of graphical objects in the ADEglist
slot. The value at the i-th row and j-th column is equal to 1 if the j-th graphical object is superposed to i-th one. Otherwise, this value is equal to 0.
plot
: a logical value indicating if the graphs should be displayed.
When users fill only one argument among positions
, layout
and add
, the other values are automatically computed to define the ADEgS
object.
We illustrate the different possibilities to create objects with the ADEgS
function. Simple juxtaposition using a vector as layout:
ADEgS(adeglist = list(g2, g3), layout = c(1, 2))
Layout specified as a matrix:
matrix(c(1, 1, 0, 1, 1, 0, 0, 0, 2), byrow = T, nrow = 3)
mlay <- mlay
## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 1 0
## [3,] 0 0 2
ADEgS(adeglist = list(g6, g2), layout = mlay)
Using the matrix of positions offers a very flexible way to arrange the different graphs:
rbind(c(0, 0.3, 0.7, 1), c(0.5, 0, 1, 0.5))
mpos <-ADEgS(adeglist = list(g3, g5), positions = mpos)
Lastly, superposition can also be specified using the add
argument:
ADEgS(list(g5, g3), add = matrix(c(0, 1, 0, 0), byrow = TRUE, ncol = 2))
More examples are available in the help page by typing example(ADEgS)
in the R session.
The package adegraphics
contains functionalities to create collections of graphs. These collections are based on a simple graph repeated for different groups of individuals, variables or axes. The building process of these collections is quite simple (definition of arguments in the call of a user function) and leads to the creation of an ADEgS
object.
facets
)The adegraphics
package allows to split up the data by one variable (factor
) and to plot the subsets of data together. This possibility of conditional plot is available for all user functions (except the table.*
functions) by setting the facets
argument. This is directly inspired by the functionalities offered in the lattice
and ggplot2
packages.
Let us consider the jv73
data set. The table jv73$morpho
contains the measures of 6 variables describing the geomorphology of 92 sites. A PCA can be performed on this data set:
data(jv73)
dudi.pca(jv73$morpho, scannf = FALSE)
pca2 <-s.label(pca2$li)
The sites are located on 12 rivers (jv73$fac.riv
) and it is possible to represent the PCA scores for each river using the facets
argument:
s.label(pca2$li, facets = jv73$fac.riv) g8 <-
length(g8)
## [1] 12
names(g8)
## [1] "Allaine" "Audeux" "Clauge" "Cuisance" "Cusancin" "Dessoubre"
## [7] "Doubs" "Doulonnes" "Drugeon" "Furieuse" "Lison" "Loue"
The ADEgS
returned object contains the 12 plots. It is then possible to focus on a given river (e.g., the Doubs river) by considering only a subplot (e.g., type g8$Doubs
). The facets
functionality is very general and available for the majority of adegraphics
functions. For instance, with the s.class
function:
s.class(pca2$li, fac = jv73$fac.riv, col = rainbow(12), facets = jv73$fac.riv)
All 2-D functions (i.e. s.*
) returning an object inheriting from the ADEg.S2
class have the xax
et yax
arguments. These arguments allow to choose which column of the main argument (i.e. df
) should be plotted as x and y axes. As in ade4
, these two arguments can be simple integers. In adegraphics
, the user can also specify vectors as xax
and/or yax
arguments to obtain multiple graphs. Here, we represent the different correlation circles associated to the first four PCA axes of the olympic data set:
dudi.pca(olympic$tab, scannf = FALSE, nf = 4)
pca1 <- s.corcircle(pca1$co, xax = 1:2, yax = 3:4) g9 <-
length(g9)
## [1] 4
names(g9)
## [1] "x1y3" "x2y3" "x1y4" "x2y4"
@positions g9
## [,1] [,2] [,3] [,4]
## [1,] 0.0 0.5 0.5 1.0
## [2,] 0.5 0.5 1.0 1.0
## [3,] 0.0 0.0 0.5 0.5
## [4,] 0.5 0.0 1.0 0.5
All 1-D functions (i.e. s1d.*
) returning an object inheriting from the ADEg.C1
or ADEg.S1
classes have the score
argument. Usually, this argument should be a numeric vector but it is also possible to consider an object with several columns (data.frame
or matrix
). In this case, an ADEgS
object is returned in which one graph by column is created. For instance for the olympic
data set, we can represent the link between the global performance (fac.score
) and the PCA scores on the first four axes (pca1$li
):
dim(pca1$li)
## [1] 33 4
s1d.boxplot(pca1$li, fac.score, col = c("red", "blue"),
psub = list(position = "topleft", cex = 2))
Some user functions (s1d.density
, s1d.gauss
, s1d.boxplot
, s1d.class
, s.class
, s.image
, s.traject
, s.value
, triangle.class
) have an argument named fac
or z
. This argument can have several columns (data.frame
or matrix
) so that each column is used to create a separate graph. For instance, we can represent the distribution of the 6 environmental variables on the PCA factorial map of the jv73$tab
data set:
s.value(pca2$li, pca2$tab, symbol = "circle")
ade4
packageLastly, we reimplemented all the graphical functions of the ade4
package designed to represent the outputs of a multivariate analysis. The functions ade4::plot.*
, ade4::kplot.*
, ade4::scatter.*
and ade4::score.*
return ADEgS
objects. It is now very easy to represent or modify these graphical outputs:
data(meaudret)
dudi.pca(meaudret$env, scannf = FALSE)
pca3 <- dudi.pca(meaudret$spe, scale = FALSE, scannf = FALSE)
pca4 <- coinertia(pca3, pca4, scannf = FALSE, nf = 3)
coi1 <- plot(coi1) g10 <-
class(g10)
## [1] "ADEgS"
## attr(,"package")
## [1] "adegraphics"
names(g10)
## [1] "Xax" "Yax" "eig" "XYmatch" "Yloadings" "Xloadings"
@Call g10
## plot.coinertia(x = coi1)
Compared to the ade4
package, the main advantage of adegraphics
concerns the numerous possibilities to customize a graph using several graphical parameters. These parameters are stored in slots trellis.par
, adeg.par
and g.args
(see the Slots and Methods section) of an ADEg
object. These parameters can be defined during the creation of a graph or updated a posteriori (using the update
method).
trellis.par
The trellis.par
slot is a list of parameters that are directly included in the call of functions of the lattice
package. The name of parameters and their default value are given by the trellis.par.get
function of lattice
.
library(lattice)
sort(names(trellis.par.get()))
## [1] "add.line" "add.text" "as.table"
## [4] "axis.components" "axis.line" "axis.text"
## [7] "background" "box.3d" "box.dot"
## [10] "box.rectangle" "box.umbrella" "clip"
## [13] "dot.line" "dot.symbol" "fontsize"
## [16] "grid.pars" "layout.heights" "layout.widths"
## [19] "panel.background" "par.main.text" "par.sub.text"
## [22] "par.title.text" "par.xlab.text" "par.ylab.text"
## [25] "par.zlab.text" "plot.line" "plot.polygon"
## [28] "plot.symbol" "reference.line" "regions"
## [31] "shade.colors" "strip.background" "strip.border"
## [34] "strip.shingle" "superpose.line" "superpose.polygon"
## [37] "superpose.symbol"
Hence, modifications of some of these parameters will modify the graphical display of an ADEg
object. For instance, margins are defined using layout.widths
and layout.heights
parameters, clip
parameter allows to overpass panel boundaries and axis.line
and axis.text
allow to customize lines and text of axes.
scale(olympic$tab)
d <- table.image(d, plot = FALSE)
g11 <- table.image(d, axis.line = list(col = "blue"), axis.text = list(col = "red"),
g12 <-plot = FALSE)
ADEgS(c(g11, g12), layout = c(1, 2))
adeg.par
The adeg.par
slot is a list of graphical parameters specific to the adegraphics
package. The name of parameters and their default value are available using the adegpar
function which is inspired by the par
function of the graphics
package.
names(adegpar())
## [1] "p1d" "parrows" "paxes" "pbackground" "pellipses"
## [6] "pgrid" "plabels" "plegend" "plines" "pnb"
## [11] "porigin" "ppalette" "ppoints" "ppolygons" "pSp"
## [16] "psub" "ptable"
A description of these parameters is available in the help page of the function (?adegpar
). Note that each adeg.par
parameter starts by the letter ’p’ and its name relates to the type of graphical element considered (ptable
is for tables display, ppoints
for points, parrows
for arrows, etc). Each element of this list can contain one or more sublists. Details on a sublist are obtained using its name either as a parameter of the adegpar
function or after the $
symbol. For example, if we want to know the different parameters to manage the display of points:
adegpar("ppoints")
## $ppoints
## $ppoints$alpha
## [1] 1
##
## $ppoints$cex
## [1] 1
##
## $ppoints$col
## [1] "black"
##
## $ppoints$pch
## [1] 20
##
## $ppoints$fill
## [1] "black"
adegpar()$ppoints
## $alpha
## [1] 1
##
## $cex
## [1] 1
##
## $col
## [1] "black"
##
## $pch
## [1] 20
##
## $fill
## [1] "black"
The full list of available parameters is summarized in Figure 3.
The ordinate represents the different sublists and the abscissa gives the name of the parameters available in each sublist. Note that some row names have two keys separated by a dot: the first key indicates the first level of the sublist, etc. For example plabels.boxes
is the sublist boxes
of the sublist plabels
. The parameters border
,col
, alpha
, lwd
, lty
and draw
in plabels.boxes
allow to control the aspect of the boxes around labels.
According to the function called, only some of the full list of adeg.par
parameters are useful to modify the graphical display. Figure 4 indicates which parameters can affect the display of an object created by a given user function. For example, the background (pbackground
parameter) can be modified for all functions whereas the display of ellipses (pellipses
parameter) affects only three functions.
The adegpar
function allows to modify globally the values of graphical parameters so that changes will affect all subsequent displays. For example, we update the size/color of labels and add axes to a plot:
adegpar()
oldadegpar <-adegpar("plabels")
## $plabels
## $plabels$alpha
## [1] 1
##
## $plabels$cex
## [1] 1
##
## $plabels$col
## [1] "black"
##
## $plabels$srt
## [1] "horizontal"
##
## $plabels$optim
## [1] FALSE
##
## $plabels$boxes
## $plabels$boxes$alpha
## [1] 1
##
## $plabels$boxes$border
## [1] "black"
##
## $plabels$boxes$col
## [1] "white"
##
## $plabels$boxes$draw
## [1] TRUE
##
## $plabels$boxes$lwd
## [1] 1
##
## $plabels$boxes$lty
## [1] 1
s.label(dfxy = pca1$li, plot = FALSE)
g13 <-adegpar(plabels = list(col = "blue", cex = 1.5), paxes.draw = TRUE)
adegpar("plabels")
## $plabels
## $plabels$alpha
## [1] 1
##
## $plabels$cex
## [1] 1.5
##
## $plabels$col
## [1] "blue"
##
## $plabels$srt
## [1] "horizontal"
##
## $plabels$optim
## [1] FALSE
##
## $plabels$boxes
## $plabels$boxes$alpha
## [1] 1
##
## $plabels$boxes$border
## [1] "black"
##
## $plabels$boxes$col
## [1] "white"
##
## $plabels$boxes$draw
## [1] TRUE
##
## $plabels$boxes$lwd
## [1] 1
##
## $plabels$boxes$lty
## [1] 1
s.label(dfxy = pca1$li, plot = FALSE)
g14 <-ADEgS(c(g13, g14), layout = c(1, 2))
As the adegpar
function can accept numerous graphical parameters, it can be used to define some graphical themes. The next releases of adegraphics
will offer functionalities to easily create, edit and store graphical themes. Here, we reassign the original default parameters:
adegpar(oldadegpar)
A second option is to update the graphical parameters locally so that the changes will only modify the object created. This is done using the dots (...
) argument in the call to a user function. In this case, the default values of parameters in the global environment are not modified:
adegpar("ppoints")
## $ppoints
## $ppoints$alpha
## [1] 1
##
## $ppoints$cex
## [1] 1
##
## $ppoints$col
## [1] "black"
##
## $ppoints$pch
## [1] 20
##
## $ppoints$fill
## [1] "black"
s.label(dfxy = pca1$li, plabels.cex = 0, ppoints = list(col = c(2, 4, 5), cex = 1.5, pch = 15))
adegpar("ppoints")
## $ppoints
## $ppoints$alpha
## [1] 1
##
## $ppoints$cex
## [1] 1
##
## $ppoints$col
## [1] "black"
##
## $ppoints$pch
## [1] 20
##
## $ppoints$fill
## [1] "black"
In the previous example, we can see that parameters can be either specified using a ’.
’ separator or a list. For instance, using plabels.cex = 0
or plabels = list(cex = 0)
is strictly equivalent. Moreover, partial names can be used if there is no ambiguity (such as plab.ce = 0
in our example).
g.args
The g.args
slot is a list of parameters specific to the function used (and thus to the class of the returned object). Several parameters are very general and used in all adegraphics
functions:
xlim
, ylim
: limits of the graph on the x and y axes
main
, sub
: main title and subtitle
xlab
, ylab
: labels of the x and y axes
scales
: a list determining how the x and y axes (tick marks dans labels) are drawn; this is the scales
parameter of the xyplot
function of lattice
The ADEg.S2
objects can also contain spatial information (map stored as a Spatial
object or neighborhood stored as a nb
object):
Sp
, sp.layout
: objects from the sp
package to display spatial objects, Sp
for maps and sp.layout
for spatial widgets as a North arrow, scale, etc.
nbobject
: object of class nb
or listw
to display neighbor graphs.
When the facets
(see the Partitioning the data (facets
) section) argument is used, users can modify the parameter samelimits
: if it is TRUE
, all graphs have the same limits whereas limits are computed for each subgraph independently when it is FALSE
. For example, considering the jv73
data set, each subgraph is computed with its own limits and labels are then more scattered:
s.label(pca2$li, facets = jv73$fac.riv, samelimits = FALSE)
Several other g.args
parameters can be updated according to the class of the created object (see Figure 2).
ADEgS
Users can either apply the changes to all graphs or to update only one graph. Of an ADEgS
, to apply changes on all the graphs contained in an ADEgS
, the syntax is similar to the one described for an ADEg
object. For example, background color can be changed for all graphs in g10
using the pbackground.col
parameter.
plot(coi1, pbackground.col = "steelblue") g15 <-
To change the parameters of a given graph, the name of the parameter must be preceded by the name of the subgraph. This supposes that the names of subgraphs are known. For example, to modify only two graphs:
names(g15)
## [1] "Xax" "Yax" "eig" "XYmatch" "Yloadings" "Xloadings"
plot(coi1, XYmatch.pbackground.col = "steelblue", XYmatch.pgrid.col = "red",
eig.ppolygons.col = "orange")
adegraphics
functions in your packageIn this section, we illustrate how adegraphics
functionalities can be used to implement graphical functions in your own package. We created an objet of class track
that contains a vector of distance and time.
list()
tra1 <-$time <- runif(300)
tra1$distance <- tra1$time * 5 + rnorm(300)
tra1class(tra1) <- "track"
For an object of the class track
, we wish to represent different components of the data:
an histogram of distances
an histogram of speeds (i.e., distance / time)
a 2D plot representing the distance, the time and the line corresponding to the linear model that predict distance by time
The corresponding multiple plot can be done using adegraphics
functions:
s1d.hist(tra1$distance, psub.text = "distance", ppolygons.col = "blue",
g1 <-pgrid.draw = FALSE, plot = FALSE)
s1d.hist(tra1$distance / tra1$time, psub.text = "speed", ppolygons.col = "red",
g2 <-plot = FALSE)
s.label(cbind(tra1$time, tra1$distance), paxes = list(aspectratio = "fill",
g31 <-draw = TRUE), plot = FALSE)
xyplot(tra1$distance ~ tra1$time, aspect = g31@adeg.par$paxes$aspectratio,
g32 <-panel = function(x, y) {panel.lmline(x, y)})
superpose(g31, g32)
g3 <- ADEgS(list(g1, g2, g3)) G <-
To facilitate the graphical representation of an object of class track
, the simplest solution is to design a function plot
for this class. We illustrate how to define such function with a particular emphasis on the management of graphical parameters. The function is provided below and we detail the different steps.
function(x, pos = -1, storeData = TRUE, plot = TRUE, ...) {
plot.track <-
## step 1 : sort parameters for each graph
c("histDist", "histSpeed", "regression")
graphsnames <- sortparamADEgS(..., graphsnames = graphsnames,
sortparameters <-nbsubgraphs = c(1, 1, 2))
## step 2 : define default values for graphical parameters
list()
params <-1]] <- list(psub = list(text = "distance"), ppolygons = list(col = "blue"),
params[[pgrid = list(draw = FALSE))
2]] <- list(psub = list(text = "speed"), ppolygons = list(col = "red"),
params[[pgrid = list(draw = FALSE))
3]] <- list()
params[[3]]$l1 <- list(paxes = list(aspectratio = "fill", draw = TRUE))
params[[3]]$l2 <- list()
params[[names(params) <- graphsnames
modifyList(params, sortparameters, keep.null = TRUE)
sortparameters <-
## step 3 : create each individual plot (ADEg)
do.call("s1d.hist", c(list(score = substitute(x$distance), plot = FALSE,
g1 <-storeData = storeData, pos = pos - 2), sortparameters[[1]]))
do.call("s1d.hist", c(list(score = substitute(x$distance / x$time),
g2 <-plot = FALSE, storeData = storeData, pos = pos - 2), sortparameters[[2]]))
do.call("s.label", c(list(dfxy = substitute(cbind(x$time, x$distance)), plot =
g31 <-FALSE, storeData = storeData, pos = pos - 2), sortparameters[[3]][[1]]))
xyplot(x$distance ~ x$time, aspect = g31@adeg.par$paxes$aspectratio,
g32 <-panel = function(x, y) {panel.lmline(x, y)})
do.call("superpose", list(g31, g32))
g3 <-@Call <- call("superpose", g31@Call, g32$call)
g3
## step 4 : create the multiple plot (ADEgS)
matrix(1:3, 1, 3)
lay <- new(Class = "ADEgS", ADEglist = list(g1, g2, g3), positions =
object <-layout2position(lay), add = matrix(0, ncol = 3, nrow = 3),
Call = match.call())
names(object) <- graphsnames
if(plot)
print(object)
invisible(object)
}
In the first step, the arguments given by the user through the dots (…) argument are managed. A name is given to each subgraph and stored in the vector graphnames
. Then, the function sortparamADEgS
associates the graphical parameters of the dots (…) argument to each subgraph. If a prefix is specified and matches the name of a graph (e.g., histDist.pbackground.col = grey
), the parameter is applied only to the graphic specified (e.g., called histDist
). If no prefix is specified (e.g., pbackground.col = grey
), the parameter is applied to all subgraphs. The function sortparamADEgS
returns a list (length equal to the number of subgraph) of lists of graphical parameters.
In the second step, default values for some graphical parameters are modified. The default parameters are stored in a list which has the same structure that the one produced by sortparamADEgS
(i.e., names corresponding to those contained in graphsnames
). Then, the modifyList
function is applied to merge user and defaults values of paramaters (if a parameter is specified by the user and in the default, the value given by the user is used).
In the third step, each subgraph is created. Here, we create two C1.hist
objects and superpose a S2.label
object and a trellis
one. The functions do.call
and substitute
are used to provide a pretty call for each subgraph (stored in the Call
slot).
In a final step, the multiple graph is build through the creation of a new ADEgS
object and possibly plotted.
The plot.track
function can then be used by:
plot(tra1)
Graphical parameters can be modified by:
plot(tra1, histDist.ppoly.col = "green", pbackground.col = "grey")
data(meaudret)
s.label(pca3$li, plot = FALSE)
g16 <- s.label(pca3$li, ppoints.col= "red", plabels = list(box = list(draw = FALSE),
g17 <-optim = TRUE), plot = FALSE)
ADEgS(c(g16, g17), layout = c(1, 2))
s.class(pca3$li, fac = meaudret$design$season, plot = FALSE)
g18 <- s.class(pca3$li, fac = meaudret$design$season, ellipseSize = 0,
g19 <-chullSize = 1, starSize = 0.5, col = TRUE, plot = FALSE)
s.class(pca3$li, fac = meaudret$design$season, pellipses.lwd = 2,
g20 <-pellipses.border = 2:5, pellipses.col = 2:5, plot = FALSE)
s.class(pca3$li, fac = meaudret$design$season, ellipseSize = 0,
g21 <-chullSize = 0, ppolygons.lwd = 2, plines.col = 2:5, starSize = 1.2, plot = FALSE)
ADEgS(c(g18, g19, g20, g21), layout = c(2, 2))
data(rpjdl)
dudi.coa(rpjdl$fau, scannf = FALSE, nf = 3)
coa2 <- s.value(coa2$li, coa2$li[,3], plot = FALSE)
g22 <- s.value(coa2$li, coa2$li[,3], method = "color", ppoints.cex = 0.8,
g23 <-plegend.size= 0.8, plot = FALSE)
s.value(coa2$li, coa2$li[,3], plegend.size = 0.8, ppoints.cex = 0.8,
g24 <-symbol = "square", method = "color", key = list(columns = 1),
col = colorRampPalette(c("yellow", "blue"))(6), plot = FALSE)
s.value(coa2$li, coa2$li[, 3], center = 0, method = "size", ppoints.cex = 0.6,
g25 <-symbol = "circle", col = c("yellow", "red"), plot = FALSE)
ADEgS(c(g22, g23, g24, g25), layout = c(2, 2))
c(rnorm(1000, mean = -0.5, sd = 0.5), rnorm(1000, mean = 1))
score1 <- rep(c("A", "B"), each = 1000)
fac1 <- s1d.density(score1, fac1, pback.col = "grey75", plot = FALSE)
g26 <- s1d.density(score1, fac1, col = c(2, 4), plot = FALSE)
g27 <- s1d.density(score1, fac1, col = c(2, 4), p1d.reverse = TRUE, p1d.horizontal = FALSE,
g28 <-p1d.rug.draw = FALSE, plot = FALSE)
s1d.density(score1, fac1, col = c(2, 4), ppolygons.alpha = 0.2,
g29 <-p1d = list(rug = list(tck = 1, line = FALSE)), plot = FALSE)
ADEgS(c(g26, g27, g28, g29), layout = c(2, 2))
# if(require(Guerry)) {
# library(sp)
# data(gfrance85)
# region.names <- data.frame(gfrance85)[, 5]
# col.region <- colors()[c(149, 254, 468, 552, 26)]
# g30 <- s.class(coordinates(gfrance85), region.names, porigin.include = FALSE, plot = FALSE)
# g31 <- s.class(coordinates(gfrance85), region.names, ellipseSize = 0, starSize = 0,
# Sp = gfrance85, pgrid.draw = FALSE, pSp.col = col.region[region.names], pSp.alpha = 0.4,
# plot = FALSE)
# ADEgS(c(g30, g31), layout = c(1, 2))
# }
# if(require(Guerry)) {
# s.Spatial(gfrance85[,7:12])
# }
data(mafragh, package = "ade4")
s.label(mafragh$xy, nb = mafragh$nb, plot = FALSE)
g32 <- s.label(mafragh$xy, nb = mafragh$nb, pnb.ed.col = "red", plab.cex = 0,
g33 <-pnb.node = list(cex = 3, col = "blue"), ppoints.col = "green", plot = FALSE)
ADEgS(c(g32, g33), layout = c(1, 2))
data(euro123, package = "ade4")
rbind.data.frame(euro123$in78, euro123$in86, euro123$in97)
df <-row.names(df) <- paste(row.names(euro123$in78), rep(c(1, 2, 3), rep(12, 3)), sep = "")
triangle.label(df, label = row.names(df), showposition = TRUE, plot = FALSE)
g34 <- triangle.label(euro123$in78, plabels.cex = 0, ppoints.cex = 2, addmean = TRUE,
g35 <-show = FALSE, plot = FALSE)
ADEgS(c(g34, g35), layout = c(1, 2))
This appendix summarizes the main changes between ade4
and adegraphics
. Each line corresponds to a graphical argument defined in ade4
and its equivalent in adegraphics
is given.
Arguments in ade4 |
Functions in ade4 |
g.args in adegraphics |
adeg.par in adegraphics |
|
---|---|---|---|---|
abline.x |
table.cont |
ablineX |
||
abline.y |
table.cont |
ablineY |
||
abmean.x |
table.cont |
meanX |
||
abmean.y |
table.cont |
meanY |
||
addaxes |
s.arrow , s.chull , s.class , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , triangle.class , triangle.plot |
paxes.draw |
||
area |
s.arrow , s.chull , s.class , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value |
Sp |
a Sp object |
|
axesell |
s.class , s.distri , triangle.class |
pellipses.axes.draw |
||
box |
s.corcircle , triangle.plot |
pbackground.box |
||
boxes |
s.arrow , s.label , sco.class , sco.label , sco.match |
plabels.boxes.draw |
||
cellipse |
s.class , s.distri , triangle.class |
ellipseSize |
||
cgrid |
s.arrow , s.class , s.chull , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match |
pgrid.nint |
both play on the grid mesh, but they are not strictly equivalent | |
clabel |
s.arrow , s.class , s.chull , s.corcircle , s.distri , s.kde2d , s.label , s.match , s.traject , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match , triangle.plot |
plabels.cex |
||
clabel |
table.dist |
axis.text = list() lattice parameter |
||
clabel.col |
table.cont , table.paint , table.value |
axis.text = list() lattice parameter |
||
clabel.row |
table.cont , table.paint , table.value |
axis.text = list() lattice parameter |
||
clegend |
s.value , table.cont , table.value |
plegend.size ppoints.cex |
parameters setting the legend size | |
clegend |
table.paint |
plegend.size |
||
clogo |
s.logo |
ppoints.cex |
||
cneig |
s.image , s.kde2d , s.label , s.logo , s.value |
pnb.edge.lwd |
||
col.labels |
table.cont , table.paint , table.value |
labelsy |
||
contour |
s.arrow , s.class , s.chull , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value |
Sp |
a Sp object |
|
contour.plot |
s.image |
region |
||
cpoints , cpoint |
s.arrow , s.class , s.chull , s.distri , s.kde2d , s.label , s.match , s.traject , s.value , sco.class , sco.label , sco.match , triangle.class , triangle.plot |
ppoints.cex |
||
csize |
s.value , table.cont , table.dist , table.paint , table.value |
ppoints.cex |
||
csize |
sco.distri |
sdSize |
||
cstar |
s.class , s.distri , triangle.class |
starSize |
||
csub |
s.arrow , s.chull , s.class , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match , triangle.class , triangle.plot |
psub.cex |
||
draw.line |
triangle.biplot , triangle.class , triangle.plot |
pgrid.draw |
||
edge |
s.arrow , s.match , s.traject |
parrows.length |
setting the length of the arrows to 0 is equivalent to edge = FALSE |
|
grid |
s.arrow , s.chull , s.class , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match , table.cont , table.dist , table.value |
pgrid.draw |
||
horizontal |
sco.class , sco.gauss , sco.label , sco.match |
p1d.horizontal |
||
image.plot |
s.image |
contour |
||
includeorigin , include.origin |
s.arrow , s.chull , s.class , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match |
porigin.include |
||
kgrid |
s.image |
gridsize |
||
klogo |
s.logo |
no correspondence | ||
labeltriangle |
triangle.class , triangle.plot |
no correspondence | ||
legen |
sco.gauss |
labelplot |
||
neig |
s.image , s.kde2d , s.label , s.logo , s.value |
nbobject |
a nb object |
|
optchull |
s.chull |
chullSize |
||
origin |
s.arrow , s.chull , s.class , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match |
porigin.origin |
||
pch |
s.arrow , s.chull , s.class , s.distri , s.kde2d , s.label , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.label , sco.match , triangle.class , triangle.plot , table.cont |
ppoints.pch |
||
pixmap |
s.arrow , s.chull , s.class , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value |
no correspondence | ||
pos.lab |
sco.class , sco.label , sco.match |
p1d.labpos |
||
possub |
s.arrow , s.chull , s.class , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.class , sco.gauss , sco.label , sco.match , triangle.class , triangle.plot |
psub.pos |
||
rectlogo |
s.logo |
rect |
||
reverse |
sco.class , sco.gauss , sco.label , sco.match |
p1d.reverse |
||
row.labels |
table.cont , table.paint , table.value |
labelsx |
||
scale |
triangle.class , triangle.plot |
adjust |
||
show.position |
triangle.class , triangle.plot |
showposition |
||
sub |
s.arrow , s.chull , s.class , s.corcircle , s.distri , s.image , s.kde2d , s.label , s.logo , s.match , s.traject , s.value , sco.boxplot , sco.class , sco.distri , sco.gauss , sco.label , sco.match , triangle.class , triangle.plot |
psub.text |
||
y.rank |
sco.distri |
yrank |
||
zmax |
s.value |
set to default max(abs(z)) | ||
Dray, Stéphane, and Anne-Béatrice Dufour. 2007. “The ade4 Package: Implementing the Duality Diagram for Ecologists.” Journal of Statistical Software 22 (4): 1–20. https://doi.org/10.18637/jss.v022.i04.
Murrell, Paul. 2005. R Graphics. Chapman & Hall/CRC Press. https://www.e-reading.club/bookreader.php/137370/C486x_APPb.pdf.
Sarkar, Deepayan. 2008. Lattice: Multivariate Data Visualization with R. Springer. https://doi.org/10.1007/978-0-387-75969-2.
Siberchicot, Aurélie, Alice Julien-Laferrière, Anne-Béatrice Dufour, Jean Thioulouse, and Stéphane Dray. 2017. “adegraphics: An S4 Lattice-Based Package for the Representation of Multivariate Data.” The R Journal 9 (2): 198–212. https://journal.r-project.org/archive/2017/RJ-2017-042/index.html.