filter()
behaviour
in bcdata v0.4.0This vignette describes a change in {bcdata}
v0.4.0
related to using locally-executed functions in a filter()
query with bcdc_query_geodata()
:
When using bcdc_query_geodata()
with
filter()
, many functions are translated to a query plan
that is passed to and executed on the server - this includes the CQL
Geometry predicates such as INTERESECTS()
,
CROSSES()
, BBOX()
etc, as well as many base R
functions. However you sometimes want to include a function call in your
filter()
statement which should be evaluated locally -
i.e., it’s an R function (often an {sf}
function) with no
equivalent function on the server. Prior to version 0.4.0,
{bcdata}
did a reasonable (though not perfect) job of
detecting R functions inside a filter()
statement that
needed to be evaluated locally. In order to align with recommended best
practices for {dbplyr}
backends, as of v0.4.0, function
calls that are to be evaluated locally now need to be wrapped in
local()
.
For example, say we want to create a bounding box around two points and use that box to perform a spatial filter on the remote dataset, to give us just the set of local greenspaces that exist within that bounding box.
library(sf)
library(bcdata)
two_points <- st_sfc(st_point(c(1164434, 368738)),
st_point(c(1203023, 412959)),
crs = 3005)
Previously, we could just do this, with sf::st_bbox()
embedded in the call:
bcdc_query_geodata("local-and-regional-greenspaces") %>%
filter(BBOX(st_bbox(two_points, crs = st_crs(two_points))))
## Error: Unable to process query. Did you use a function that should be evaluated locally? If so, try wrapping it in 'local()'.
However you must now use local()
to force local
evaluation of st_bbox()
on your machine in R, before it is
translated into a query plan to be executed on the server:
bcdc_query_geodata("local-and-regional-greenspaces") %>%
filter(BBOX(local(st_bbox(two_points, crs = st_crs(two_points)))))
## Querying 'local-and-regional-greenspaces' record
## • Using collect() on this object will return 1154 features and 19 fields
## • At most six rows of the record are printed here
## ────────────────────────────────────────────────────────────────────────────────────────────────────
## Simple feature collection with 6 features and 19 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 1200113 ymin: 385903.5 xmax: 1202608 ymax: 386561.8
## Projected CRS: NAD83 / BC Albers
## # A tibble: 6 × 20
## id LOCAL…¹ PARK_…² PARK_…³ PARK_…⁴ REGIO…⁵ MUNIC…⁶ CIVIC…⁷ CIVIC…⁸ STREE…⁹ LATIT…˟ LONGI…˟
## <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 WHSE_BASE… 3347 Konuks… Local Green … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 2 WHSE_BASE… 3304 <NA> Local Trail Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 3 WHSE_BASE… 3380 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 4 WHSE_BASE… 3369 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 5 WHSE_BASE… 3453 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 6 WHSE_BASE… 3361 <NA> Local Trail Capital Distri… <NA> <NA> <NA> 48.5 -123.
## # … with 8 more variables: WHEN_UPDATED <date>, WEBSITE_URL <chr>, LICENCE_COMMENTS <chr>,
## # FEATURE_AREA_SQM <dbl>, FEATURE_LENGTH_M <dbl>, OBJECTID <int>, SE_ANNO_CAD_DATA <chr>,
## # geometry <POLYGON [m]>, and abbreviated variable names ¹LOCAL_REG_GREENSPACE_ID, ²PARK_NAME,
## # ³PARK_TYPE, ⁴PARK_PRIMARY_USE, ⁵REGIONAL_DISTRICT, ⁶MUNICIPALITY, ⁷CIVIC_NUMBER,
## # ⁸CIVIC_NUMBER_SUFFIX, ⁹STREET_NAME, ˟LATITUDE, ˟LONGITUDE
There is another illustration in the “querying spatial data vignette”.