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Abstract

This vignette explains the different tools included in the package to deal with the weak or the many
instruments problem. For example, it presents estimation methods like the LIML or its modified version
proposed by Fuller (1977) method and some improved inference methods for TSLS and GMM. It is in
early stage of development, so comments and recommendations are welcomed.

Important: This document is incomplete (so is the package for what is covered here). The treatment of
weak instruments is under development. Feel free to test the different functions and provide feedback to the
author.

1 The model

We only consider linear models for the moment. Let the following be the model of interest:

y = X1β1 + X2β2 + u ≡ Xβ + u

where y and u are n × 1, X1 is n × k1, X2 is n × k2, β1 is k1 × 1, β2 is k2 × 1, X is n × k and β is k × 1, with
k = k1 + k2. We assume that the intercept is included in X1. Suppose that X2 is the matrix of endogenous
variables. Then, we want to instrument them with Z2, a n × l2 matrix, where l2 ≥ k2. The matrix of
exogenous variables that are included and excluded is Z = [X1, Z2], a n × q matrix with q = k1 + l2. The
reduced form for X2, or the first stage regression, is therefore:

X2 = X1Π1 + Z2Π2 + e ≡ ZΠ + e ,

where Π1 is k1 × k2, Π2 is l2 × k2, Π is q × k2 and e is n × k2.

2 K-class Estimator and LIML

The K-Class methods need to be added to the package if we want to develop tools for models with weak and/or
many instruments. The reason is that estimations and tests based on the limited information maximum
likelihood (LIML), which is K-Class method, has shown to perform well in these cases.

To my knowledge, many of the methods proposed here have not been implemented in R yet. However, some
procedures are implemented in the ivmodel package of Kang et al. (2023). Some of our procedures have
been influenced by the package, so we use it when needed to compare our results.
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2.1 The method

A K-Class estimator is the solution to

X ′(I − κMz)(y − Xβ) = 0 ,

where Mz = I −Pz and Pz is the projection matrix Z(Z ′Z)−1Z ′. It is therefore represented as a just-identified
IV with the instrument Wκ = (I − κMz)X. Note that MzX1 = 0, which implies the following matrix of
instruments:

Wκ =
[

(I − κMz)X1 (I − κMz)X2

]

=
[

X1 (I − κMz)X2

]

=
[

X1 (X2 − κê)
]

,

where ê = MzX2 is the matrix of residuals from the first stage regression. Note that the model is just-identified
only when l2 > k2. The above representation is just a convenient way of defining the method. In fact, we can
also represent the two-stage least squares (TSLS) method , over-identified or not, as a just-identified IV with
W = [X1X̂2], where X̂2 = PzX2 ≡ X2 − ê. Therefore, TSLS is a K-Class estimator with κ = 1. We can also
see that the least squares estimator can be obtained by setting κ to 0. The solution can be written as follows:

β̂κ = (W ′
κX)−1W ′

κy .

We can compute the standard errors using the asymptotic properties of just identified IV. In the case of iid
errors (no heteroskedasticity), the variance can be estimated as:

Σ̂κ,iid = σ̂2(W ′
κX)−1W ′

κWκ(W ′
κX)−1 ,

where σ̂2 is the estimated variance of u. Note that the bread of the covariance matrix is symmetric, which is
not the case in general for just-identified IV. Also, we can simplify the expression to σ̂2(W ′

κX)−1 only when
κ is equal to 0 or 1. For other values it is not possible because (I − κMz)(I − κMz) ̸= (I − κMz). In the case
of heteroskedastic errors, the covariance matrix can be estimated as follows:

Σ̂κ,HC = (W ′
κX)−1Ω̂κ,HC(W ′

κX)−1 ,

where Ω̂HC is an HCCM estimator of the variance of W ′
κu. For example, we can obtain the HC0 estimator

with the following Ω̂:

Ω̂κ,HC0 =

n
∑

i=1

û2

i Wκ,iW
′
κ,i ,

where ûi = yi − X ′
iβ̂κ.

2.2 The LIML method

We do not justify how κ is defined for the LIML method. For more details, see Davidson and MacKinnon
(2004). Let Y = [y X2] be the n × (1 + k2) matrix with all endogenous variables from the model. Then, κliml

is defined as the smallest eigenvalue of:

(Y ′MzY )−1/2Y ′M1Y (Y ′MzY )−1/2 ,
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where M1 = I − P1 and P1 = X1(X ′
1X1)−1X ′

1. We can show that it is equivalent to finding the smallest
eigenvalue of (Y ′MzY )−1Y ′M1Y . An alternative to the LIML method was proposed by Fuller (1977). The
method is also a K-Class method with κful = κliml − α/(n − q), where α is parameter. It usually set to=1.
The Fuller method happens to have better properties than LIML.

2.3 Computing κ̂

We want to use the data used by Card (1993). The dataset is included in the ivmodel package. The
endogenous variable is education (educ) and the two instruments we consider are near4 and near2. The
other included exogenous variables are experience (exper), experience squared (expersq) and a set of binary
variables. In the following, the ivmodel object is generate. It contains the \kappa for LIML and Fuller:

library(ivmodel)

data(card.data)

## from the ivmodel examples

Z <- card.data[,c("nearc4","nearc2")]

Y <- card.data[,"lwage"]

D <- card.data[,"educ"]

Xname <- c("exper", "expersq", "black", "south", "smsa", "reg661",

"reg662", "reg663", "reg664", "reg665", "reg666", "reg667",

"reg668", "smsa66")

X <- card.data[,Xname]

mod <- ivmodel(Y=Y,D=D,Z=Z,X=X)

We can see the κ’s using the following commands:

c(LIML=mod$LIML$k, Fuller=mod$Fuller$k)

## LIML Fuller

## 1.000409 1.000075

We can create a linearModel object with the same specifications as follows. By default, ivmodel model
assumes homoskedasticity, so we set the argument vcov to "iid":

library(momentfit)

## Loading required package: sandwich

g <- reformulate(c("educ", Xname), "lwage")

h <- reformulate(c(c("nearc4","nearc2"), Xname))

mod2 <- momentModel(g, h, data=card.data, vcov="iid")

The getK function generates κ̂ for the original LIML and the modified one. No effort is done to make it
efficient for now. The modified LIML is κ̂ − α/(n − k), where k is the number of exogenous variables (included
and excluded).

We can compare the values with the ones computed by ivmodel. They are identical:

getK(mod2)

## LIML Fuller

## 1.000409 1.000075

Note that the function getK has three arguments: object, which is the model object, alpha, which is use to
compute κful and returnRes. When the latter is set to TRUE (the default is FALSE), the function returns a
list of two elements: the above vector of κ and the matrix of first stage residuals MzX2. The latter is used
by the K-Class function to generate the matrix of instruments Wκ. By setting it to TRUE, it avoids having to
recompute it.
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We can also have more than one endogenous regressor. For this model, we can interact educ with, say, exper,
which is like having a second endogenous variable. The package can recognize that educ:exper is endogenous
because it is not part of the set of instruments. The following is the new model:

g2 <- reformulate(c("educ", "educ:exper", Xname), "lwage")

h2 <- reformulate(c(c("nearc4","nearc2", "nearc2:exper", "nearc4:exper"), Xname))

mod3 <- momentModel(g2, h2, data=card.data)

getK(mod3)

## LIML Fuller

## 1.000702 1.000368

Note that κliml = 1 for just-identified models. When it is the case, getK does not compute the residuals and
only returns the vector of κ no matter how we set the argument returnRes. The following model is just
identified:

h3 <- reformulate(c(c("nearc4"), Xname))

mod4 <- momentModel(g, h3, data=card.data)

getK(mod4)

## LIML Fuller

## 1.000000 0.999666

2.4 Computing the K-Class estimators

The function that computes the K-Class estimator is kclassfit. The arguments are: object, the model
object, k, the value of κ, type, the type of κ to compute when k is missing ("LIML", "Fuller" or "BTSLS" for
the biased corrected TSLE of Nagar (1959)) and alpha, the parameter of the Fuller method (the default is 1).
Note first that the estimator is a TSLS estimator when k=1 and a LSE when it is equal to 0. The package
already has a tsls method for linearModel objects, which is what kclassfit calls when k=1. For the LSE,
a new method was created to facilitate the estimation of model objects by least squares. The method is lse:

lse(mod2)

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: Least Squares

##

## Coefficients:

## (Intercept) educ exper expersq black south

## 4.7393766 0.0746933 0.0848320 -0.0022870 -0.1990123 -0.1479550

## smsa reg661 reg662 reg663 reg664 reg665

## 0.1363845 -0.1185698 -0.0222026 0.0259703 -0.0634942 0.0094551

## reg666 reg667 reg668 smsa66

## 0.0219476 -0.0005887 -0.1750058 0.0262417

It is an object of class lsefit that contains the lm object from the estimation. Therefore, the kclassfit

function returns an object of class lsefit when k=0 and tlsl when k=1. For any other value, which includes
LIML, Fuller and BTSLS (κ = n/(n − l2 + 2)), the function returns an object of class kclassfit. The object
contains a gmmfit object, generated by the estimation of the artificially created just-identified model, the

4



name of the method, the value of κ and the original model.

(liml <- kclassfit(mod2))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: LIML (k = 1.000409)

## coefficients:

## (Intercept) educ exper expersq black

## 3.221269444 0.164027756 0.121689917 -0.002362359 -0.116870463

## south smsa reg661 reg662 reg663

## -0.142791708 0.097738480 -0.101656724 0.001630403 0.048731041

## reg664 reg665 reg666 reg667 reg668

## -0.054724308 0.055061606 0.074061888 0.042413909 -0.199985585

## smsa66

## 0.014116798

(fuller <- kclassfit(mod2, type="Fuller"))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: Fuller (k = 1.000075)

## coefficients:

## (Intercept) educ exper expersq black

## 3.319304e+00 1.582588e-01 1.193098e-01 -2.357495e-03 -1.221749e-01

## south smsa reg661 reg662 reg663

## -1.431251e-01 1.002341e-01 -1.027489e-01 9.134797e-05 4.726123e-02

## reg664 reg665 reg666 reg667 reg668

## -5.529064e-02 5.211649e-02 7.069652e-02 3.963694e-02 -1.983725e-01

## smsa66

## 1.489978e-02

(btsls <- kclassfit(mod2, type="BTSLS"))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010
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##

## Estimation: Two-Stage Least Squares

## coefficients:

## (Intercept) educ exper expersq black

## 3.3396868121 0.1570593700 0.1188148807 -0.0023564836 -0.1232777953

## south smsa reg661 reg662 reg663

## -0.1431944615 0.1007530001 -0.1029759964 -0.0002286491 0.0469556243

## reg664 reg665 reg666 reg667 reg668

## -0.0554083884 0.0515041450 0.0699968047 0.0390595603 -0.1980370807

## smsa66

## 0.0150625816

Note that the biased-adjusted TSLS is just TSLS because the adjustment only affects the method when the
number of excluded instruments is not equal to 2. We see in the following that the LIML and Fuller estimates
I get are identical to the ones from the ivmodel package.

print(mod$LIML$point.est,digits=10)

## Estimate

## [1,] 0.1640277561

print(coef(liml)[2], digits=10)

## educ

## 0.1640277561

print(mod$Fuller$point.est,digits=10)

## Estimate

## [1,] 0.1582588323

print(coef(fuller)[2], digits=10)

## educ

## 0.1582588323

Note that the argument k can be the output of getK with returnRes=TRUE. This is a way of avoiding
recomputing the κ and the first stage residuals. This is useful when we want to compute the LIML and Fuller
for the same model. For example, the following is the fast version of what we did above.

resK <- getK(mod2, 1, TRUE)

(liml <- kclassfit(mod2, resK))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: LIML (k = 1.000409)

## coefficients:

## (Intercept) educ exper expersq black

## 3.221269444 0.164027756 0.121689917 -0.002362359 -0.116870463

## south smsa reg661 reg662 reg663

## -0.142791708 0.097738480 -0.101656724 0.001630403 0.048731041

## reg664 reg665 reg666 reg667 reg668
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## -0.054724308 0.055061606 0.074061888 0.042413909 -0.199985585

## smsa66

## 0.014116798

(fuller <- kclassfit(mod2, resK, type="Fuller"))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 17

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: Fuller (k = 1.000075)

## coefficients:

## (Intercept) educ exper expersq black

## 3.319304e+00 1.582588e-01 1.193098e-01 -2.357495e-03 -1.221749e-01

## south smsa reg661 reg662 reg663

## -1.431251e-01 1.002341e-01 -1.027489e-01 9.134797e-05 4.726123e-02

## reg664 reg665 reg666 reg667 reg668

## -5.529064e-02 5.211649e-02 7.069652e-02 3.963694e-02 -1.983725e-01

## smsa66

## 1.489978e-02

2.5 Inference

Since the kclassfit object contains a just-identified gmmfit object, we can do inference as if it was an
IV. The summary method for kclassfit objects is in fact the same as for gmmfit objects, but it contains
additional information about the original model and the method. It returns an object of class summaryKclass.

(s <- summary(liml))

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 16

## Number of moment conditions: 16

## Number of Endogenous Variables: 1

## Sample size: 3010

##

## Estimation: LIML (k = 1.0004094273165)

## Sandwich vcov: TRUE

## coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.22126944 0.98048104 3.2854 0.0010184 **

## educ 0.16402776 0.05763981 2.8457 0.0044309 **

## exper 0.12168992 0.02482322 4.9023 9.474e-07 ***

## expersq -0.00236236 0.00035189 -6.7133 1.903e-11 ***

## black -0.11687046 0.05656732 -2.0660 0.0388245 *

## south -0.14279171 0.02879080 -4.9596 7.063e-07 ***

## smsa 0.09773848 0.03329490 2.9355 0.0033297 **

## reg661 -0.10165672 0.04410858 -2.3047 0.0211838 *

## reg662 0.00163040 0.03468374 0.0470 0.9625071
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## reg663 0.04873104 0.03349713 1.4548 0.1457294

## reg664 -0.05472431 0.03968009 -1.3791 0.1678523

## reg665 0.05506161 0.04942349 1.1141 0.2652459

## reg666 0.07406189 0.05544273 1.3358 0.1816059

## reg667 0.04241391 0.05143408 0.8246 0.4095836

## reg668 -0.19998559 0.05348458 -3.7391 0.0001847 ***

## smsa66 0.01411680 0.02278641 0.6195 0.5355691

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Anderson and Rubin

## Statistics df pvalue

## Test E(g)=0: 1.2321 1 0.26699

##

##

## Instrument strength based on the F-Statistics of the first stage OLS

## educ : F( 1 , 2994 ) = 13.42398 (P-Vavue = 0.0002527353 )

Note that the specification test is based on Anderson and Rubin. It is a likelihood ratio test equal to
n log(κ̂) and is distributed as a chi-square with the degrees of freedom equal to the number of over-identifying
restrictions. It calls the specTest method for kclassfit objects:

specTest(liml)

##

## Anderson and Rubin

## Statistics df pvalue

## Test E(g)=0: 1.2321 1 0.26699

We can compare the standard error we get here and the one we get from the ivmodel package. Note that
only inference about the coefficient of the endogenous variable is provided by ivmodel.

s@coef["educ",]

## Estimate Std. Error t value Pr(>|t|)

## 0.164027756 0.057639810 2.845737282 0.004430873

mod$LIML$std.err

## Std. Error

## [1,] 0.05549507

The result is quite different. But we can see why. In the following I recompute the standard error using the
formula σ̂2(W ′

κX)−1. We now get the same result. As mentioned before, this expression is only valid for
κ = 1.

spec <- modelDims(mod2)

u <- residuals(liml)

sig <- sum(uˆ2)/(spec$n-spec$k)

W <- model.matrix(liml@model, "instruments")

myX <- model.matrix(liml@model)

sqrt(diag(sig*solve(t(W)%*%myX)))[2]

## [1] 0.05549507

For Heteroskedastic errors. We have to redefine the models.

mod <- ivmodel(Y=Y,D=D,Z=Z,X=X,heteroSE=TRUE)

mod2 <- momentModel(g, h, data=card.data, vcov="MDS")
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liml <- kclassfit(mod2, resK)

summary(liml)@coef["educ",]

c(mod$LIML$point.est, mod$LIML$std.err)

The above code is not run because the ivmodel is very inefficient to compute the meat matrix. It is done
using a loop. It you run the code you should get identical point estimate and both standard errors are equal
to 0.0576098.

3 Weak Instruments

3.1 Testing for weak instrument: Stock and Yogo (2005)

This test and the critical values are for model with homoskedastic errors. The test is the smallest eigenvalue
of the following expression (Cragg and Donald (1993)):

Σ̂−1/2

e

[

X ′
2M1Z2(Z ′

2M1Z2)−1Z ′
2M1X2

]

Σ̂−1/2

e = Σ̂−1/2

e [M1X2]′[Z2Π̂2]Σ̂−1/2

e

where Σ̂e = ê′ê/(n − l2 − k1). If the number of included endogenous variables k2 is equal to 1, this is just the
F statistic for the null hypothesis H0 : Π2 = 0. For k2 > 1, it is a test of rank reduction. Under the null the
rank of Π2 is k2 − 1 and under the alternative it is equal to k2. The function CDtest, which stands for Cragg
and Donald test, computes this statistic. By using the momentStrength method, which computes the first
stage F statistics for each included endogenous variable, we can see they are both the same when k2 = 1:

(CD2 <- CDtest(mod2, print=FALSE))

## [1] 7.893096

momentStrength(mod2)

## $strength

## Stats df1 df2 pv

## educ 7.893096 2 2993 0.0003811364

##

## $mess

## [1] "Instrument strength based on the F-Statistics of the first stage OLS"

However, it does not return a p-value like the F-test computed by momentStrength. Instead, it comes with
the critical values computed by Stock and Yogo (2005). If we let the function CDtest print the result (the
default), we see the statistics and the critical values that are relevant to our model (they depend on the
number of included endogenous and excluded exogenous variables).

CDtest(mod2)

## Cragg and Donald Test for Weak Instruments

## ******************************************

## Number of included Endogenous: 1

## Number of excluded Exogenous: 2

## The test is not robust to heteroskedasticity

## Statistics: 7.893

##

## Stock and Yogo (2005) critical values

## *************************************

## Target size for TSLS:

## size=0.1 size=0.15 size=0.2 size=0.25

## 19.93 11.59 8.75 7.25
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##

## Target relative bias for Fuller-K:

## bias=0.05 bias=0.1 bias=0.2 bias=0.3

## 15.60 12.38 7.93 6.62

##

## Target size for LIML:

## size=0.1 size=0.15 size=0.2 size=0.25

## 8.68 5.33 4.42 3.92

We reject the null hypothesis that the instruments are weak if the statistic is greater than the critical value
of interest. To understand the critical values, let’s first consider the ones under “Target size for TSLS”. If are
willing to accept a wrong size of at most 10% for hypothesis tests on coefficients at 5%, the statistic must
exceed 19.93 for the instruments to be considered strong enough. Since the statistic for mod2 does not, we
should expect a higher size distortion. In fact, our statistic is equal to 7.8931, so we can expect the size to
be as high as 25% since the statistic is greater than 7.25. Under “Target size for LIML”, we have the same
critical values but for models estimated by LIML. We see that the size distortion is not as severe for LIML.
Since the statistic is between the first and the second critical value, the size should be between 10% and 15%.

We also have critical values that are based on the worst bias relative to the OLS bias. For example, if the
model is estimated by the Fuller method and we are willing to accept a relative bias of at most 5%, we need
the statistic to exceed 15.60. Since the statistic of mod2 is only greater than 6.62 (the last critical value), the
relative bias may be as large as 30%. Note that the critical values based on the relative bias are only available
for TSLS when the number of over-identifying restrictions are greater or equal to 2. For the following model,
all critical values are available. In this case, the instruments are very strong. But are they valid?

g <- reformulate(c("educ", Xname), "lwage")

h <- reformulate(c(c("nearc4","nearc2","IQ","KWW"), Xname))

mod5 <- momentModel(g, h, data=card.data, vcov="iid")

CDtest(mod5)

## Cragg and Donald Test for Weak Instruments

## ******************************************

## Number of included Endogenous: 1

## Number of excluded Exogenous: 4

## The test is not robust to heteroskedasticity

## Statistics: 228.2

##

## Stock and Yogo (2005) critical values

## *************************************

## Target relative bias for TSLS:

## bias=0.05 bias=0.1 bias=0.2 bias=0.3

## 16.85 10.27 6.71 5.34

##

## Target size for TSLS:

## size=0.1 size=0.15 size=0.2 size=0.25

## 24.58 13.96 10.26 8.31

##

## Target relative bias for Fuller-K:

## bias=0.05 bias=0.1 bias=0.2 bias=0.3

## 10.09 8.10 5.36 4.46

##

## Target size for LIML:

## size=0.1 size=0.15 size=0.2 size=0.25

## 5.44 3.87 3.30 2.98
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3.2 Testing for weak instrument: Sanderson and Windmeijer (2016)

This test was derived for models with at least 2 endogenous variables (k2 > 2 in our model). Let X2,j be the
jth included endogenous variable and and X2,−j be the k2 − 1 remaining included endogenous variables, then
the procedure is :

• Estimate the model
X2,j = X2,−jδ1 + X1δ2 + v

by TSLS using the instruments Z and save the residuals v̂.

• Estimate the model
v̂ = X1κ1 + Z2κ2 + ξ

by OLS

• Compute the F-test for H0 : κ2 = 0. Let F̃ be the value of the statistics.

• Compute the Sanderson and Windmeijer (2016) statistics Fj♣−j = F̃ [l2/(l2 − k2 + 1)].

To illustrate the procedure, we consider the following model based on the simulated dataset simData:

y = β0 + β1y1 + β2y2 + β3y3 + β4x1 + β5x2 + u ,

where y1, y2 and y3 are assumed to be endogenous. We want to estimate the model using the 5 excluded
exogenous variables z1 to z5. To use our notation, we have X1 = ¶x1, x2♢, X2 = ¶y1, y2, y3♢ and Z2 = ¶z1,
z2, z3, z4, z5♢. Following the above procedure the statistic using j=1 is:

data(simData)

## Step 1

m <- tsls(y1~y2+y3+x1+x2, ~z1+z2+z3+z4+z5+x1+x2, data=simData)

e <- residuals(m)

## Step 2

fit <- lm(e~z1+z2+z3+z4+z5+x1+x2, simData)

fitr <- lm(e~x1+x2, simData)

F <- anova(fit, fitr)$F[2]

## Step 4

(sw1 <- F*5/(5-2))

## [1] 0.7500098

The function SWtest computes this test and returns the

smod <- momentModel(y~y1+y2+y3+x1+x2, ~z1+z2+z3+z4+z5+x1+x2, data=simData)

SWtest(smod,1,FALSE)

## [1] 0.7500098

Following Sanderson and Windmeijer (2016), for models with k2 endogenous variables and l2 excluded
exogenous, we compare the statistic with the Stock and Yogo (2005) critical values for models with l2 − 1
endogeous variables and k2 − l2 + 1 excluded exogenous. This allows us to test the intruments for models with
3 endogenous variables without generating new tables. In the following, we can see that the critical values
are obtained by reducing the number of endogenous variables by 1 and the number of excluded exogenous
variables by 2. Clearly, the instruments are weak in this simulated model.

SWtest(smod)

## Sanderson and Windmeijer Test for Weak Instruments

## ***************************************************

## Number of included Endogenous: 3(-1 for the critical values)

## Number of excluded Exogenous: 5(-2 for the critical values)
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## The test is not robust to heteroskedasticity

## Statistics: 0.75

##

## Stock and Yogo (2005) critical values

## *************************************

## Critical value adjusted to Sanderson and Windmeijer (2016) specification

##

## Target size for TSLS:

## size=0.1 size=0.15 size=0.2 size=0.25

## 13.43 8.18 6.40 5.45

##

## Target relative bias for Fuller-K:

## bias=0.05 bias=0.1 bias=0.2 bias=0.3

## 11.62 9.21 6.57 5.70

##

## Target size for LIML:

## size=0.1 size=0.15 size=0.2 size=0.25

## 5.44 3.81 3.32 3.09

These critical values are obtained by running the function SYTables with the argument SWcrit set to TRUE.
Note that the authors show also that the same critical values can be used if we multiply the Cragg and
Donald statistic by k2/(k2 − l2 + 1). It is therefore possible to test for weak instruments in a model with 3
endogenous variables using the CDtest function, if we set the argument SWcrit to TRUE.

3.3 Testing for weak instruments: Montiel Olea and Pflueger (2013)

In most applied economic studies, it is unrealistic to assume that the errors are conditionally homoskedastic.
When the errors are conditionally heteroskedastic, it is recommended by Andrews, Stock, and Sun (2019) to
use the effective F-test of Montiel Olea and Pflueger (2013) (MOP). Assuming that k2 = 1, which is the only
option for this test, the procedure is:

• Replace y by M1y, X2 by M1X2 and Z2 by M1Z2 and normalize the matrix Z2 so that Z ′
2Z2/n = I

(we replace Z by Q from its QR decomposition times
√

n) . Then, the model becomes

y = X2β2 + u

and
X2 = Z2Π2 + e .

• Obtain the robust covariance matrix estimate of Π̂2, Ŵ2.

• The test is Feff = (X ′
2Z2Z ′

2X2)/[ntr(Ŵ2)], where tr(A) is the trace of A. Since Π̂2 = (Z ′
2Z2)−1Z ′

2X2 =

Z ′
2X2/n, we can write the test as Feff = nΠ̂′

2Π̂2/tr(Ŵ2).

This is computed by the function MOPtest. For now, no critical values are reported. Will be added soon.

MOPtest(mod2)

## Montiel Olea and Pflueger Test for Weak Instruments

## ****************************************************

## Simplified Test for TSLS

## Type of LS covariance matrix: iid

## Number of included Endogenous: 1

## Effective degrees of freedom: 2(with x = 10)

## Statistics: 7.935

## Critical Value (size=0.05): 19.29

## P-Value: 0.7284
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We can see that it is close to the non-robust F test:

CDtest(mod2, FALSE)

## [1] 7.893096

This is because the model mod2 is defined with vcov="iid". Therefore, Ŵ2 is a non-robust covariance matrix.
If we want an HCCM estimator, we need to define the model with vcov="MDS". It is also possible to compute
the test using HAC estimator if needed. We use the update method to change vcov and rerun the test. We
see that the robust test is a little higher than the non-robust.

mod2 <- update(mod2, vcov="MDS")

MOPtest(mod2)

## Montiel Olea and Pflueger Test for Weak Instruments

## ****************************************************

## Simplified Test for TSLS

## Type of LS covariance matrix: HCCM

## Number of included Endogenous: 1

## Effective degrees of freedom: 1.934279(with x = 10)

## Statistics: 8.176

## Critical Value (size=0.05): 19.45

## P-Value: 0.7033

The above procedure is the simplified version of the test. We start exploring the generalized test. First,
we need an estimate of the matrix W . Given the structure of Z, the robust covariance matrix of the OLS
estimators is the covariance matrix of the moment conditions, because when Z ′Z = I, the OLS estimator
of y = Zβ + u is β̂ = Z ′y = β + Z ′u. Therefore, the variance of β̂ is the variance of the moment condition
function Z ′u. The reduced form for our model is:

y = X2β2 + u = Z2[Π2β2] + v

X2 = Z2Π2 + e

For example, we can compute W2 above as follows for mod2.

• We extract Z2, X1, X2 and y,

## get Z

spec <- modelDims(mod2)

Z2 <- model.matrix(mod2, "excludedExo")

X1 <- model.matrix(mod2, "includedExo")

X2 <- model.matrix(mod2, "includedEndo")

y <- modelResponse(mod2)

• We project X1 off Z2, X2 and y and normalize Z using its QR decomposition times
√

n:

fitX1 <- lm.fit(X1, Z2)

Z2 <- fitX1$residuals

X2 <- qr.resid(fitX1$qr, X2)

y <- qr.resid(fitX1$qr, y)

Z2 <- qr.Q(qr(Z2))*sqrt(nrow(Z2))

To compute Ŵ2, we can use the tools already included in the package. We just need to create a linearModel

object with no endogenous variables. For Ŵ2, we regress X2 on Z2 and use Z2 as instruments. We can set
the argument vcov to "MDS" to obtain a robust to heteroskedasticity Ŵ2 (or to "CL" for clustered or "HAC"

for serially correlated errors).
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colnames(Z2) = paste("Z", 1:ncol(Z2), sep="")

dat <- as.data.frame(cbind(X2,Z2))

g <- reformulate(colnames(Z2), colnames(X2), FALSE)

h <- reformulate(colnames(Z2), NULL, FALSE)

m2 <- momentModel(g,h,data=dat,vcov="MDS")

We need to compute the OLS estimator and then use the vcov method for linearModel objects to estimate
the asymptotic variance of Z ′

2e/
√

n:

b <- crossprod(Z2,X2)/nrow(Z2)

w2 <- vcov(m2, b)

This is the only part of W we need to estimate for the simplified version of the test. For the general test, we
also need to estimate W1, which is the asymptotic variance of Z ′

2v/
√

n, and W12 which is the asymptotic
covariance between Z ′

2e/
√

n and Z ′
2v/

√
n. This can be done by writing the model as a system of equations

with the same regressors and instruments. The above g is the second equation, so we need to add the first in
a list and put h in a list:

dat <- as.data.frame(cbind(y=y,X2,Z2))

g <- list(reformulate(colnames(Z2), "y", FALSE), g)

h <- list(h)

m <- sysMomentModel(g,h,data=dat,vcov="MDS")

b <- list(c(crossprod(Z2,y)/nrow(Z2)),

c(crossprod(Z2,X2)/nrow(Z2)))

w <- vcov(m, b)

w

## Eqn1.Z1 Eqn1.Z2 Eqn2.Z1 Eqn2.Z2

## Eqn1.Z1 0.148439520 0.003538106 0.241860165 -0.002252146

## Eqn1.Z2 0.003538106 0.159419517 -0.002252146 0.278892794

## Eqn2.Z1 0.241860165 -0.002252146 3.504443285 0.010990879

## Eqn2.Z2 -0.002252146 0.278892794 0.010990879 3.762294024

Note that we need to adjust the sample size. The way the model m is defined, the sample is multiplied by 2.
Since we divide by twice the sample size to compute the estimator, we need to multiply the estimated W by
2. We can see that Ŵ2 is the 2 × 2 bottom left block of Ŵ :

w2

## Z1 Z2

## Z1 3.50444328 0.01099088

## Z2 0.01099088 3.76229402

This is what the function getMOPW computes. For now, it is not exported, so we need to run it using
momentfit:::. The function returns the different Ŵ ’s separately for convenience. Here we see Ŵ2:

res <- momentfit:::getMOPw(mod2)

res$w2

## Eqn2.Z1 Eqn2.Z2

## Eqn2.Z1 3.50444328 0.01099088

## Eqn2.Z2 0.01099088 3.76229402

The function also returns the elements w1, w12 and omega. The latter is Ω̂ = [v̂, ê]′[v̂, ê]/n. The matrices Ŵ1

and Ŵ12 are needed to compute the effective degrees of freedom:

Keff =
[tr(Ŵ2)]2(1 + 2x)

tr(Ŵ ′
2
Ŵ2) max eval(Ŵ2)
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where x = Be(Ŵ , Ω̂)/τ , where τ is the worst bias relative to the benchmark and Be(Ŵ , ω̂) is some function.
In the simplified version, the parameter x is equal to 1/τ , so only Ŵ2 is needed. For the generalized test, x
depends on Be(Ŵ , ω̂) for e = LIML or TSLS, which needs to be computed using a one dimentional optimizer.
The function getMOPx returns the value of x. The main arguments are w, which is the output from getMOPw,
tau that we explained above and the type of estimation we want to test the instruments for. As usual, LIML
is less biased so it requires a smaller Feff to get the same relative bias as TSLS.

momentfit:::getMOPx(w=res, tau=0.10, type="LIML")

## [1] 5.178162

By default, the MOPtest function computes the simplified test, which is the one obtained above. For the
generalized test, we set the argument simplified to FALSE.

MOPtest(mod5, simplified=FALSE, estMethod="LIML")

## Montiel Olea and Pflueger Test for Weak Instruments

## ****************************************************

## Generalized Test for LIML

## Type of LS covariance matrix: iid

## Number of included Endogenous: 1

## Effective degrees of freedom: 4(with x = 2.499927)

## Statistics: 230.4

## Critical Value (size=0.05): 6.701

## P-Value: 0

The test is the same as above, but the critical value is smaller, which is expected since the simplify test tends
to have higher critical value, especially when the number of excluded instruments is small. We can compare
the test with the one for TSLS:

MOPtest(mod5, simplified=FALSE, estMethod="TSLS")

## Montiel Olea and Pflueger Test for Weak Instruments

## ****************************************************

## Generalized Test for TSLS

## Type of LS covariance matrix: iid

## Number of included Endogenous: 1

## Effective degrees of freedom: 4(with x = 4.999854)

## Statistics: 230.4

## Critical Value (size=0.05): 10.23

## P-Value: 0

As mentioned by the authors, the efficient F is the robust F when the model is just identified. The model
mod4 created above is just-identified, but we need to change the argument vcov to "MDS":

mod4 <- update(mod4, vcov="MDS")

MOPtest(mod4, estMethod="TSLS", print=FALSE)["Feff"]

## Feff

## 14.21423

We can compare with the first stage F computed by momentStrength. As we can see, it is the same as long
as we choose the HC0 type.

momentStrength(update(mod4, vcovOptions=list(type="HC0")))$strength

## Stats df1 df2 pv

## educ 14.21423 1 2994 0.0001662837
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3.4 Testing for weak instruments: Lewis and Mertens (2022)

The authors generalize the test by Montiel Olea and Pflueger (2013) for models with multiple endogenous
variables. The test is therefore robust to non-iid errors. The statistic proposed by the authors is a generalization
of the Cragg and Donald test. It is defined as:

gmin = min eval[nΦ̂−1/2Π̂′
2Π̂2Φ̂−1/2] ,

where Φ = (Ik2
⊗ vec(Il2

))′[W2 ⊗ Il2
](Ik2

⊗ vec(Il2
)). If we write W2 as a k2 × k2 block matrix, with Aij

being the l2 × l2 matrix in the ith row and jth column, then Φij = tr(Aij). The bock matrix Aij is a robust
estimator of the covariance matrix between (Z ′

2ei) and (Z ′
2ej). It is clear that this is the MOP effective F

test when k2 = 1, because k2 = 1 implies Φ = tr(W2). As for the MOP test, we have the choice between a
less computationally demanding but more conservative critical value, called simplified, and the generalized
one. The function LewMertest computes only the simplified version by default. To obtain both, we set the
argument simplified to FALSE.

LewMertest(mod3, simplified=FALSE)

## Lewis and Mertens (2022) Test for Weak Instruments

## ***************************************************

## Number of included Endogenous: 2

## Number of excluded Exogenous: 4

## Statistics: 3.399

## Simplified Critical value (5%): 8.964

## Generalized Critical value (5%): 6.692

The function is based on the Matlab code the authors provided with their paper. As for the other tests, the
instruments are weak under the null hypothesis. And by weak, we mean that it is weak enough for the bias
to exceed the bias of the benchmark by 10% (the selected τ by default). Therefore, we fail to reject the
hypothesis that the instruments are weak in mod3 using both the simplified and generalized critical values.

Note that the critical values for the generalized approach are obtained by solving a maximization problem
numerically. The function seems to have more than one local minimum, so the procedure is to solve the
problem using random starting values and to keep the largest solution. The number of starting values is
determined by the argument npoints. By default, it is equal to 10. The authors suggest 1000 in their Matlab
code, but it seems that there is very little effect of going from 10 to 1000. We can see what happens if we
increase the number of points.

LewMertest(mod3, simplified=FALSE, print=FALSE, npoints=1)$crit

## Generalized Simplified

## 6.691683 8.964342

LewMertest(mod3, simplified=FALSE, print=FALSE, npoints=20)$crit

## Generalized Simplified

## 6.691683 8.964342

Finally, note that the authors do not provide any method to obtain the critical values for the LIML estimator.
These are only for TSLS.

3.5 Data Generating Process (for later use)

The following function is used to generate dataset with k instruments and different level of strength. The
DGP is

y1 = βy2 + u
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y2 = π′Z + e ,

where Z ∈ R
k, Var(u) = Var(e) = 1, Cor(e, u) = ρ, πi = η for all i = 1, ..., k and Z ∼ N(0, I). The R2 of the

first stage regression is therefore equal to

R2 =
kη2

kη2 + 1
,

which implies

η =

√

R2

k(1 − R2)

We can therefore set R2 and k and let the function get η.

getIVDat <- function(n, R2, k, rho, b0=0)

{

eta <- sqrt(R2/(k*(1-R2)))

Z <- sapply(1:k, function(i) rnorm(n))

sigma <- chol(matrix(c(1,rho,rho,1),2,2))

err <- cbind(rnorm(n), rnorm(n))%*%sigma

y2 <- rowSums(Z)*eta+err[,2]

y1 <- b0*y2 + err[,1]

dat <- data.frame(y1=y1, y2=y2, u=err[,1], e=err[,2])

for (i in 1:k) dat[[paste("Z",i,sep="")]] <- Z[,i]

dat

}

library(momentfit)

set.seed(112233)

k <- 10

rho <- .3

R2 <- .001

g <- y1~y2

n <- 500

h <- reformulate(paste("Z", 1:k, sep=""))

dat <- getIVDat(n, R2, k, rho)

m <- momentModel(g, h, data=dat, vcov="MDS")

## Lewis and Mertens (2022) Test for Weak Instruments

## ***************************************************

## Number of included Endogenous: 1

## Number of excluded Exogenous: 5

## Statistics: 172.5

## Simplified Critical value (5%): 16.85

## Generalized Critical value (5%): 13.11

## Montiel Olea and Pflueger Test for Weak Instruments

## ****************************************************

## Generalized Test for TSLS

## Type of LS covariance matrix: HCCM

## Number of included Endogenous: 1

## Effective degrees of freedom: 3.84256(with x = 7.088181)

## Statistics: 179.7

## Critical Value (size=0.05): 13.11
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## P-Value: 0
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