# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the
# starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
xstarts <- mean(baseT)
paraMed2_BLS <- c(
"muX", "phi11", "alphaM1", "alphaMr", "alphaM2", "mugM",
paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"),
"alphaY1", "alphaYr", "alphaY2", "mugY",
paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"),
paste0("beta", rep(c("M", "Y"), each = 3), rep(c(1, "r", 2), 2)),
paste0("beta", c("M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")),
"muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2",
paste0("Mediator", c("11", "1r", "12", "rr", "r2", "22")),
paste0("total", c("1", "r", "2")),
"residualsM", "residualsY", "residualsYM"
)
Med2_LGCM_BLS <- getMediation(
dat = RMS_dat0, t_var = rep("T", 2), y_var = "M", m_var = "R",
x_type = "baseline", x_var = "ex1", curveFun = "bilinear spline",
records = list(1:9, 1:9), res_scale = c(0.1, 0.1), res_cor = 0.3,
paramOut = TRUE, names = paraMed2_BLS
)
Med2_LGCM_BLS@Estimates
#> Name Estimate SE
#> 1 muX 0.0000 0.0447
#> 2 phi11 0.9980 0.0630
#> 3 alphaM1 2.1134 0.0246
#> 4 alphaMr 111.8319 0.7841
#> 5 alphaM2 0.6878 0.0134
#> 6 mugM 26.3108 0.2453
#> 7 psiM1M1_r 0.1935 0.0173
#> 8 psiM1Mr_r 4.6661 0.4371
#> 9 psiM1M2_r -0.0278 0.0066
#> 10 psiMrMr_r 226.5296 15.3549
#> 11 psiMrM2_r -1.9011 0.2145
#> 12 psiM2M2_r 0.0341 0.0045
#> 13 alphaY1 0.9622 0.0678
#> 14 alphaYr 19.0900 3.1871
#> 15 alphaY2 0.3800 0.2432
#> 16 mugY 34.7042 0.3575
#> 17 psiY1Y1_r 0.0553 0.0062
#> 18 psiY1Yr_r 1.7819 0.1920
#> 19 psiY1Y2_r -0.0078 0.0043
#> 20 psiYrYr_r 104.2707 7.8922
#> 21 psiYrY2_r -0.7595 0.1566
#> 22 psiY2Y2_r 0.0235 0.0052
#> 23 betaM1 0.0623 0.0231
#> 24 betaMr 5.5471 0.6945
#> 25 betaM2 -0.0468 0.0118
#> 26 betaY1 0.0149 0.0139
#> 27 betaYr 1.2907 0.5133
#> 28 betaY2 -0.0212 0.0135
#> 29 betaM1Y1 0.3807 0.0317
#> 30 betaM1Yr 0.1206 0.9362
#> 31 betaM1Y2 0.0548 0.0505
#> 32 betaMrYr 0.7277 0.0309
#> 33 betaMrY2 -0.0012 0.0020
#> 34 betaM2Y2 0.4813 0.1434
#> 35 muetaM1 2.1134 0.0247
#> 36 muetaMr 111.8319 0.8223
#> 37 muetaM2 0.6878 0.0136
#> 38 muetaY1 1.7667 0.0166
#> 39 muetaYr 100.7289 0.8923
#> 40 muetaY2 0.6942 0.0172
#> 41 Mediator11 0.0237 0.0090
#> 42 Mediator1r 0.0075 0.0585
#> 43 Mediator12 0.0034 0.0034
#> 44 Mediatorrr 4.0368 0.5298
#> 45 Mediatorr2 -0.0066 0.0111
#> 46 Mediator22 -0.0225 0.0088
#> 47 total1 0.0386 0.0156
#> 48 totalr 5.3350 0.6953
#> 49 total2 -0.0469 0.0133
#> 50 residualsM 33.8855 1.0615
#> 51 residualsY 40.5671 0.8725
#> 52 residualsYM 6.9264 0.6861
paraMed3_BLS <- c(
"muetaX1", "muetaXr", "muetaX2", "mugX",
paste0("psi", c("X1X1", "X1Xr", "X1X2", "XrXr", "XrX2", "X2X2")),
"alphaM1", "alphaMr", "alphaM2", "mugM",
paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"),
"alphaY1", "alphaYr", "alphaY2", "mugY",
paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"),
paste0("beta", c("X1Y1", "X1Yr", "X1Y2", "XrYr", "XrY2", "X2Y2",
"X1M1", "X1Mr", "X1M2", "XrMr", "XrM2", "X2M2",
"M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")),
"muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2",
paste0("mediator", c("111", "11r", "112", "1rr", "1r2", "122", "rr2", "r22", "rrr", "222")),
paste0("total", c("11", "1r", "12", "rr", "r2", "22")),
"residualsX", "residualsM", "residualsY", "residualsMX", "residualsYX", "residualsYM"
)
set.seed(20191029)
Med3_LGCM_BLS <- getMediation(
dat = RMS_dat0, t_var = rep("T", 3), y_var = "S", m_var = "M", x_type = "longitudinal",
x_var = "R", curveFun = "bilinear spline", records = list(2:9, 1:9, 1:9),
res_scale = c(0.1, 0.1, 0.1), res_cor = c(0.3, 0.3), tries = 10, paramOut = TRUE,
names = paraMed3_BLS
)
Med3_LGCM_BLS@Estimates
#> Name Estimate SE
#> 1 muetaX1 2.1134 0.0245
#> 2 muetaXr 111.8439 0.8270
#> 3 muetaX2 0.6874 0.0135
#> 4 mugX 26.3157 0.2478
#> 5 psiX1X1 0.1898 0.0174
#> 6 psiX1Xr 5.0488 0.4757
#> 7 psiX1X2 -0.0275 0.0066
#> 8 psiXrXr 259.0603 17.8840
#> 9 psiXrX2 -2.1602 0.2313
#> 10 psiX2X2 0.0341 0.0044
#> 11 alphaM1 0.9251 0.0670
#> 12 alphaMr 15.9474 3.0276
#> 13 alphaM2 0.4582 0.2806
#> 14 mugM 34.6342 0.3577
#> 15 psiM1M1_r 0.0544 0.0063
#> 16 psiM1Mr_r 1.7670 0.1998
#> 17 psiM1M2_r -0.0073 0.0042
#> 18 psiMrMr_r 104.5097 8.3212
#> 19 psiMrM2_r -0.7660 0.1576
#> 20 psiM2M2_r 0.0233 0.0051
#> 21 alphaY1 0.0432 0.0678
#> 22 alphaYr 0.6016 1.3882
#> 23 alphaY2 -1.1500 0.2806
#> 24 mugY 33.6805 1.0216
#> 25 psiY1Y1_r 0.0195 0.0041
#> 26 psiY1Yr_r 0.5092 0.0964
#> 27 psiY1Y2_r -0.0010 0.0028
#> 28 psiYrYr_r 36.6572 3.3169
#> 29 psiYrY2_r -0.3656 0.0836
#> 30 psiY2Y2_r 0.0079 0.0041
#> 31 betaX1Y1 0.3987 0.0313
#> 32 betaX1Yr 0.6677 1.2151
#> 33 betaX1Y2 0.0653 0.0571
#> 34 betaXrYr 0.7445 0.0347
#> 35 betaXrY2 -0.0020 0.0023
#> 36 betaX2Y2 0.4755 0.1700
#> 37 betaX1M1 0.1540 0.0371
#> 38 betaX1Mr 4.4495 1.2668
#> 39 betaX1M2 -0.1999 0.0700
#> 40 betaXrMr 0.1960 0.0348
#> 41 betaXrM2 0.0090 0.0028
#> 42 betaX2M2 0.8529 0.1818
#> 43 betaM1Y1 0.2718 0.0541
#> 44 betaM1Yr -2.6244 1.5247
#> 45 betaM1Y2 0.0092 0.0928
#> 46 betaMrYr 0.2927 0.0367
#> 47 betaMrY2 0.0028 0.0024
#> 48 betaM2Y2 0.3738 0.1587
#> 49 muetaM1 1.7676 0.0166
#> 50 muetaMr 100.6304 0.8937
#> 51 muetaM2 0.6963 0.0171
#> 52 muetaY1 0.8493 0.0131
#> 53 muetaYr 56.7453 0.9210
#> 54 muetaY2 0.5806 0.0131
#> 55 mediator111 0.1084 0.0229
#> 56 mediator11r -1.0462 0.6148
#> 57 mediator112 0.0037 0.0370
#> 58 mediator1rr 0.1954 0.3497
#> 59 mediator1r2 0.0019 0.0039
#> 60 mediator122 0.0244 0.0269
#> 61 mediatorrr2 0.2179 0.0308
#> 62 mediatorr22 0.0021 0.0018
#> 63 mediatorrrr -0.0008 0.0010
#> 64 mediator222 0.1777 0.0713
#> 65 total11 0.2624 0.0273
#> 66 total1r 3.5987 1.2804
#> 67 total12 -0.1700 0.0633
#> 68 totalrr 0.4140 0.0339
#> 69 totalr2 0.0103 0.0024
#> 70 total22 1.0306 0.1773
#> 71 residualsX 41.1750 1.0840
#> 72 residualsM 19.4421 0.8803
#> 73 residualsY 33.9661 0.5548
#> 74 residualsMX 7.0083 0.7114
#> 75 residualsYX 1.8316 0.5713
#> 76 residualsYM 2.5687 0.5551