Personalize drug regimens using individual pharmacokinetic (PK) and
pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic
drug monitoring (TDM) data with a population model, 'posologyr' offers
accurate posterior estimates and helps compute optimal individualized dosing
regimens. The empirical Bayes estimates are computed following the method
described by Kang et al. (2012) <doi:10.4196/kjpp.2012.16.2.97>.
Version: |
1.2.8 |
Depends: |
R (≥ 3.5.0) |
Imports: |
rxode2, stats, mvtnorm, data.table |
Suggests: |
lotri, rmarkdown, testthat (≥ 3.0.0), ggplot2, magrittr, tidyr |
Published: |
2025-02-04 |
DOI: |
10.32614/CRAN.package.posologyr |
Author: |
Cyril Leven [aut,
cre, cph],
Matthew Fidler
[ctb],
Emmanuelle Comets [ctb],
Audrey Lavenu [ctb],
Marc Lavielle [ctb] |
Maintainer: |
Cyril Leven <cyril.leven at chu-brest.fr> |
BugReports: |
https://github.com/levenc/posologyr/issues |
License: |
AGPL-3 |
URL: |
https://levenc.github.io/posologyr/,
https://github.com/levenc/posologyr |
NeedsCompilation: |
no |
Citation: |
posologyr citation info |
Materials: |
README NEWS |
In views: |
Pharmacokinetics |
CRAN checks: |
posologyr results [issues need fixing before 2025-02-06] |