The R
package rsvddpd
is an acronym for
Robust Singular Value Decomposition using Density Power Divergence. As
the name suggests, the package mainly concerns with a special function
for performing SVD in a robust way in presence of outliers. The details
of the algorithm can be found in the paper https://arxiv.org/abs/2109.10680.
There are 3 primary functions in the package.
rSVDdpd
algorithm based on the data matrix
X.You can install the development version from GitHub with:
# install.packages("devtools")
::install_github("subroy13/rsvddpd") devtools
Use the following to install the development version with manuals and vignettes, which provides useful information about the structure of the function.
::install_github("subroy13/rsvddpd", build_opts = c("--no-resave-data"), build_manual = TRUE, build_vignettes = TRUE) devtools
This is a basic example usages which shows the need for the package.
library(rsvddpd)
<- matrix(1:20, nrow = 4, ncol = 5)
X svd(X)
#> $d
#> [1] 5.352022e+01 2.363426e+00 4.870683e-15 7.906968e-16
#>
#> $u
#> [,1] [,2] [,3] [,4]
#> [1,] -0.4430188 -0.7097424 -0.52426094 0.1585890
#> [2,] -0.4798725 -0.2640499 0.81721984 0.1793091
#> [3,] -0.5167262 0.1816426 -0.06165685 -0.8343851
#> [4,] -0.5535799 0.6273351 -0.23130204 0.4964870
#>
#> $v
#> [,1] [,2] [,3] [,4]
#> [1,] -0.09654784 0.76855612 -0.6000256 0.1704800
#> [2,] -0.24551564 0.48961420 0.5577664 -0.5560862
#> [3,] -0.39448345 0.21067228 0.2312115 0.1606664
#> [4,] -0.54345125 -0.06826963 0.2643802 0.6650059
#> [5,] -0.69241905 -0.34721155 -0.4533325 -0.4400661
As you can see, the first two singular values are 53.5 and 2.36, and the third and fourth singular values are very small positive reals.
Let us see what happens when you contaminate just one entry of the matrix by a large value say 100.
2, 3] <- 100
X[svd(X)
#> $d
#> [1] 1.070340e+02 3.617861e+01 2.200002e+00 1.851858e-15
#>
#> $u
#> [,1] [,2] [,3] [,4]
#> [1,] -0.1472125 -0.4893994 0.816938282 2.672612e-01
#> [2,] -0.9548191 0.2971284 0.005940614 -1.110223e-16
#> [3,] -0.1753739 -0.5614500 -0.105644232 -8.017837e-01
#> [4,] -0.1894546 -0.5974754 -0.566935489 5.345225e-01
#>
#> $v
#> [,1] [,2] [,3] [,4]
#> [1,] -0.03121244 -0.1097166 -0.798115312 3.357170e-01
#> [2,] -0.08603093 -0.2591083 -0.524844308 -6.516983e-01
#> [3,] -0.94371346 0.3306537 -0.008548386 1.387779e-16
#> [4,] -0.19566792 -0.5578918 0.021697699 6.122270e-01
#> [5,] -0.25048641 -0.7072836 0.294968703 -2.962457e-01
Note that, the first singular value changes drastically, being 107,
while second and third singular values 36.1 and 2.2 respectively.
However, such error is very common in practice, and can pose serious
problem in many statistical estimation techniques. rSVDdpd
solves the problem as shown in the following code.
rSVDdpd(X, alpha = 0.3)
#> $d
#> [1] 5.355990e+01 2.358915e+00 1.492008e-01 6.694858e-11
#>
#> $u
#> [,1] [,2] [,3] [,4]
#> [1,] 0.4426825 -0.7124356 0.4743827 2.672615e-01
#> [2,] 0.4810583 -0.2588203 -0.8376126 2.697441e-07
#> [3,] 0.5163450 0.1804013 0.2408039 -8.017834e-01
#> [4,] 0.5531753 0.6268197 0.1240144 5.345228e-01
#>
#> $v
#> [,1] [,2] [,3] [,4]
#> [1,] 0.09646637 0.77032520 0.2174706 -5.827481e-01
#> [2,] 0.24532578 0.49133794 0.2200041 7.031679e-01
#> [3,] 0.39606323 0.20319890 -0.8954575 5.552961e-07
#> [4,] 0.54304936 -0.06663662 0.2250709 2.214907e-01
#> [5,] 0.69191099 -0.34562390 0.2276043 -3.419085e-01
If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub.
This package is distributed under MIT license.