This tutorial demonstrates the linear_plateau()
function
for fitting a continuous response model and estimating a critical soil
test value (CSTV). This function fits a segmented regression model that
follows two phases: a positive linear response and a flat plateau. The
join point or break point is often interpreted as the CSTV. See Anderson
and Nelson (1975) for examples.
\[ \begin{cases} x < j,\ y = a + bx \\ x > j,\ y = a + bj \end{cases} \]
where
y
represents the fitted crop relative yield,
x
the soil test value,
a
the intercept (ry
when stv
=
0),
b
the slope (as the change in RY per unit of soil nutrient
supply),
j
the join point (a.k.a, break point) when the plateau
phase starts (i.e., the CSTV).
The linear_plateau()
function works automatically with
self-starting initial values to facilitate the model’s convergence. The
parameters of this regression model have simple interpretations.
Some disadvantages are that:
the crop relative yield response may be more curvilinear, such that a sharp break from linear response to plateau is unreasonable.
the default CSTV confidence interval (based on symmetric Wald’s
intervals) is generally unreliable. We recommend the user try the
boot_linear_plateau()
function for a reliable confidence
interval estimation of parameters via bootstrapping (resampling with
replacement).
Load your data frame with soil test value and relative yield data.
Specify the following arguments in
linear_plateau()
:
data
(optional)
stv
(soil test value)
ry
(relative yield) columns or vectors
target
(optional) for calculating the soil test
value at some RY level along the slope segment.
tidy
TRUE
(produces a data.frame with
results) or FALSE
(store results as list)
plot
TRUE
(produces a ggplot as main
output) or FALSE
(no plot, only results as
data.frame)
resid
TRUE
(produces plots with
residuals analysis) or FALSE
(no plot),
Run and check results.
Check residuals plot, and warnings related to potential limitations of this model.
Adjust curve plots as desired with additional
ggplot2
functions.
Suggested packages
linear_plateau()
tidy
= TRUE (default)It returns a tidy data frame (more organized results)
linear_plateau(corr_df, STV, RY, tidy = TRUE)
#> # A tibble: 1 × 16
#> intercept slope equation plateau CSTV lowerCL upperCL CI_type target STVt
#> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 53.7 1.55 53.7 + 1.5… 96.2 27.4 24 30.7 Wald, … 96.2 27.4
#> # ℹ 6 more variables: AIC <dbl>, AICc <dbl>, BIC <dbl>, R2 <dbl>, RMSE <dbl>,
#> # pvalue <dbl>
tidy
= FALSEIt returns a LIST (may be more efficient for multiple fits at once)
linear_plateau(corr_df, STV, RY, tidy = FALSE)
#> $intercept
#> [1] 53.71661
#>
#> $slope
#> [1] 1.550917
#>
#> $equation
#> [1] "53.7 + 1.55x when x < 27"
#>
#> $plateau
#> [1] 96.18333
#>
#> $CSTV
#> [1] 27.38169
#>
#> $lowerCL
#> [1] 24
#>
#> $upperCL
#> [1] 30.7
#>
#> $CI_type
#> [1] "Wald, 95%"
#>
#> $target
#> [1] 96.2
#>
#> $STVt
#> [1] 27.4
#>
#> $AIC
#> [1] 1025.96
#>
#> $AICc
#> [1] 1026.26
#>
#> $BIC
#> [1] 1037.64
#>
#> $R2
#> [1] 0.52
#>
#> $RMSE
#> [1] 9.94
#>
#> $pvalue
#> [1] 0
# Example 1. Fake dataset manually created
data_1 <- data.frame("RY" = c(65,80,85,88,90,94,93,96,97,95,98,100,99,99,100),
"STV" = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# Example 2. Native fake dataset from soiltestcorr package
data_2 <- soiltestcorr::data_test
# Example 3. Native dataset from soiltestcorr package, Freitas et al. (1966), used by Cate & Nelson (1971)
data_3 <- soiltestcorr::freitas1966 %>%
rename(STV = STK)
data.all <- bind_rows(data_1, data_2, data_3, .id = "id")
Note: the stv
column needs to have the same name for all
datasets if binding rows.
map()
# Run multiple examples at once with purrr::map()
data.all %>%
nest(data = c("STV", "RY")) %>%
mutate(model = map(data, ~ linear_plateau(stv = .$STV, ry = .$RY))) %>%
unnest(model)
#> # A tibble: 3 × 18
#> id data intercept slope equation plateau CSTV lowerCL upperCL CI_type
#> <chr> <list> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1 <tibble> 65.9 5.09 65.9 + 5… 97.4 6.21 5.1 7.4 Wald, …
#> 2 2 <tibble> 53.7 1.55 53.7 + 1… 96.2 27.4 24 30.7 Wald, …
#> 3 3 <tibble> 39.2 0.752 39.2 + 0… 95.6 75.0 46.4 104. Wald, …
#> # ℹ 8 more variables: target <dbl>, STVt <dbl>, AIC <dbl>, AICc <dbl>,
#> # BIC <dbl>, R2 <dbl>, RMSE <dbl>, pvalue <dbl>
group_modify()
Alternatively, with group_modify
, nested data is not
required. However, it still requires a grouping variable (in this case,
id
) to identify each dataset. group_map()
may
also be used, though list_rbind()
is required to return a
tidy data frame of the model results instead of a list.
data.all %>%
group_by(id) %>%
group_modify(~ linear_plateau(data = ., STV, RY))
#> # A tibble: 3 × 17
#> # Groups: id [3]
#> id intercept slope equation plateau CSTV lowerCL upperCL CI_type target
#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 1 65.9 5.09 65.9 + 5.0… 97.4 6.21 5.1 7.4 Wald, … 97.4
#> 2 2 53.7 1.55 53.7 + 1.5… 96.2 27.4 24 30.7 Wald, … 96.2
#> 3 3 39.2 0.752 39.2 + 0.7… 95.6 75.0 46.4 104. Wald, … 95.6
#> # ℹ 7 more variables: STVt <dbl>, AIC <dbl>, AICc <dbl>, BIC <dbl>, R2 <dbl>,
#> # RMSE <dbl>, pvalue <dbl>
Bootstrapping is a suitable method for obtaining confidence intervals for parameters or derived quantities. Bootstrapping is a resampling technique (with replacement) that draws samples from the original data with the same size. If you have groups within your data, you can specify grouping variables as arguments in order to maintain, within each resample, the same proportion of observations than in the original dataset.
This function returns a table with as many rows as the resampling size (n) containing the results for each resample.
set.seed(123)
boot_lp <- boot_linear_plateau(corr_df, STV, RY, n = 500) # only 500 for sake of speed
boot_lp %>% head(n = 5)
#> # A tibble: 5 × 13
#> boot_id intercept slope plateau CSTV target STVt AIC AICc BIC R2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 49.0 1.72 96.2 27.4 96.2 27.4 1028. 1029. 1040. 0.55
#> 2 2 56.4 1.38 95.9 28.5 95.9 28.5 1015. 1015. 1027. 0.49
#> 3 3 62.6 1.12 96.2 29.9 96.2 29.9 1004. 1004. 1016. 0.43
#> 4 4 60.0 1.22 97.1 30.4 97.1 30.4 992. 992. 1003. 0.56
#> 5 5 61.2 1.24 96.5 28.6 96.5 28.6 978. 979. 990. 0.51
#> # ℹ 2 more variables: RMSE <dbl>, pvalue <dbl>
# CSTV Confidence Interval
quantile(boot_lp$CSTV, probs = c(0.025, 0.5, 0.975))
#> 2.5% 50% 97.5%
#> 22.61863 27.60057 32.16080
# Plot
boot_lp %>%
ggplot(aes(x = CSTV))+
geom_histogram(color = "grey25", fill = "#9de0bf", bins = 10)
We can generate a ggplot with the same linear_plateau()
function. We just need to specify the argument
plot = TRUE
.
As ggplot object, plots can be adjusted in several ways, such as modifying titles and axis scales.
Set argument resid = TRUE
.
#> # A tibble: 1 × 16
#> intercept slope equation plateau CSTV lowerCL upperCL CI_type target STVt
#> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 39.2 0.752 39.2 + 0.7… 95.6 75.0 46.4 104. Wald, … 95.6 75
#> # ℹ 6 more variables: AIC <dbl>, AICc <dbl>, BIC <dbl>, R2 <dbl>, RMSE <dbl>,
#> # pvalue <dbl>
Anderson, R. L., and Nelson, L. A. (1975). A Family of Models Involving Intersecting Straight Lines and Concomitant Experimental Designs Useful in Evaluating Response to Fertilizer Nutrients. Biometrics, 31(2), 303–318. 10.2307/2529422