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Correction of rounding, typing, and sign errors with
the deducorrect package

Mark van der Loo, Edwin de Jonge and Sander Scholtus

Summary: Since raw (survey) data usually has to be edited before statistical

analysis can take place, the availability of data cleaning algorithms is important

to many statisticians. In this paper the implementation of three data correction

methods in R are described. The methods of this package can be used to cor-

rect numerical data under linear restrictions for typing errors, rounding errors,

sign errors and value interchanges. The algorithms, based on earlier work of

Scholtus, are described and implementation details with coded examples are

given. Although the algorithms have originally been developed with financial

balance accounts in mind the algorithms are formulated generically and can be

applied in a wider range of applications.

Keywords: Statistical data editing, deductive correction
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1 Introduction

Raw statistical data is often plagued with internal inconsistencies and errors

which inhibit reliable statistical analysis. Establishment survey data is par-

ticularly prone to in-record inconsistencies, because the numerical variables

contained in these data are usually interrelated by many mathematical rela-

tionships. Before statistical analysis can take place, these relationships have to

be checked and violations should be resolved as much as possible. While estab-

lishing that a record violates certain relationships is straightforward, deciding

which fields in a record contain the actual errors can be a daunting task. In the

past, much attention has been paid to this decision problem, often using Fellegi

and Holt’s principle (Fellegi and Holt, 1976) as the point of departure. This

principle states that for non-systematic errors, and with no information on the

cause of errors, one should try to make a record consistent by changing as few

variables as possible.

This principle precludes using the data available in the (possibly erroneous)

fields to detect and correct the error. In certain cases, naively applying Fellegi

and Holt’s principle will yield consistent records with nevertheless faulty data.

As an example, consider a survey record with three variables x, y and z, which

have to obey the relationship x = y − z. Such relationships frequently occur

in financial profit-loss accounts. If a record happens to have values such that

x = z − y, then Fellegi and Holt’s principle suggests that either the numerical

value of x, y or z should be adapted in such a way that the relationship holds,

while the values in the record suggest that the values in fields y and z might

have been interchanged. Swapping the values of z and y therefore seems a

reasonable solution although it formally means changing two values.

This package provides three functions which do use the data in a record to

detect and correct errors:

1. correctRounding corrects rounding errors in numerical records that cause

violations of linear equality rules. The method works by making small

changes to a large enough set of randomly chosen variables.

2. correctTypos corrects typing erros in numerical records that cause viola-

tions of linear equality rules. The method works by computing correction

suggestions and checking which suggestions correspond to correcting a

typing error.

3. correctSigns corrects sign flips and value swaps in numerical records

which violates linear equality rules. The method minimizes the number

of value swaps and sign flips via a binary programming formulation.
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Both correctTypos and correctSigns are capable of taking account of possi-

ble rounding errors in the records.

1.1 Deductive correction

We use the term deductive correction to indicate methods which use information

available in inconsistent records to deduce and solve the probable cause of error.

Recently, a number of algorithms for deductive correction have been proposed

by Scholtus (2008, 2009). These algorithms can solve problems not uncommon

in numerical survey data, namely

� Rounding errors.

� Simple typing errors.

� Sign swaps and/or value interchanges.

The algorithms focus on solving problems in records that have to obey a set of

linear relationships, each of which can be written as

a · x� b where � ∈ {=,≤, <} (1)

Here, every a is a nonzero real vector, x a numerical data record and b a

constant. In data-editing literature the restrictions imposed on records are

often called edit rules, or edits in short. If an edit describes a relationship

between a number of variables {xj}, we say that the edit contains the variables

{xj}. Conversely, when xj is part of a relationship defined by an edit we say

that xj occurs in the edit. We will denote a generic set of edits with E. The

matrix representation of (in)equality parts of E will be denoted A.

In this paper, we describe the deducorrect package for R (R Development

Core Team, 2011), which implements (slight) generalizations of the algorithms

proposed by Scholtus (2008, 2009). The purpose of this paper is to provide

details on the algorithms and to familiarize users with the syntax of the package.

For a detailed description of the available routines and their arguments we refer

the reader to the reference manual that comes with the package.

The correction algorithms in the package report the results in a uniform matter.

Section 1.2 provides details on the deducorrect output object which stores

information on corrected records, applied corrections, and more. Sections 2,

3 and 4 provide details on the classes of problems that may be treated with

the package, an exposition of the algorithms used and coded examples with

analysis of the results. It is also shown how the examples from Scholtus (2008)

and Scholtus (2009) can be treated with this software.
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The package requires that linear relationships are defined with the editrules

package (De Jonge and van der Loo, 2011). The editrules package offers func-

tionality to define and manipulate sets of equality and inequality restrictions.

With the editrules package, linear restrictions can be defined as R-statements

(in character format) or as a matrix. As a convenience, one can define edits

in any of the forms

a · x� b where � ∈ {=,≤, <,≥, >}, (2)

and have it automatically translated to the form in (1). A short introduction

to the editrules package is given in the appendix of this paper, but we refer

the reader to the package documentation for more detailed information. Unless

noted otherwise, all R-code examples in this paper can be executed from the R

command-line after loading the deducorrect and editrules package.

Throughout, we denote the Euclidean vector norm with double bars || · || while

single bars | · | denote the element-wise absolute values of the argument.

1.2 The deducorrect object and status values

Apart from the corrected records, every correct- function of the deducorrect
package returns some logging information on the applied corrections. Informa-
tion on applied corrections, a status indicator per record, a timestamp and user
information are included and stored uniformly in a deducorrect object. See
Table 1 for an overview of the contents of this object. Because of the large
amount of information in a deducorrect object, the contents are summarized
for printing to screen. In the example below, we define one record of data, a
linear restriction in the form of an editmatrix, and apply the correctSigns
correction method1.

> (d <- data.frame(x = 1, y = 0, z = 1))

x y z
1 1 0 1

> E <- editmatrix("x==y-z")

> sol <- correctSigns(E, d)

> sol

deducorrect object generated by 'correctSigns' on Tue May 24 15:33:22 2011
slots: $corrected, $corrections, $status, $timestamp, $generatedby, $user

Record status:
invalid partial corrected valid Sum

0 0 1 0 1

Variables corrected:
x Sum
1 1

1sometimes extra brackets are included to force R to print the result
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Table 1. Contents of the deducorrect object. All slots can be accessed

through the $ operator.

corrected The input data with records corrected where possible.

corrections A data.frame describing the corrections. Every record

contains a row number, labeling the row in the input

data, a variable name of the input data, the old value

and the new value.

status A data.frame with at least one column giving treat-

ment information of every record in the input data. De-

pending on the correct function, some extra columns

may be added.

timestamp The date and time when the deducorrect object was

created.

generatedby The name of the function that called newdeducorrect

to create the object.

user The name of the user running R, deduced from the en-

vironment variables of the system using R.

The individual components of sol can be retrieved with the dollar-operator.
The slot corrected is the same as the input data, but with corrected records,
where possible:

> sol$corrected

x y z
1 -1 0 1

The applied corrections are stored in the corrections slot.

> sol$corrections

row variable old new
1 1 x 1 -1

Every row in corrections tells which variable in which row of the input data
was changed, and what the old and new values are. The status slot gives
details on the status of the record.

> sol$status

status weight degeneracy nflip nswap
1 corrected 1 2 1 0

The first column is an indicator which can take five different values, indicating

whether validity could be established, and/or if the record could be (partially)

corrected by the method which created the deducorrect object. These values

are (see Table 2 for an overview per correct-function):

8



Table 2. The number of equalities n and inequalities m violated by an edit, before

and after treatment with one of the correct-functions of deducorrect. The label

N/A indicates that this status value does not occur for tat function. (Note that is

is not the same as NA, which occurs when validity could not be established because

the record has missing values.) As an example, consider the fourth row. In this

case, a record enters a correct-function with n linear equality violations. After

being treated by the function less than n, but more than 0 edit violations remain.

For correctSigns, this situation cannot occur: the method tries to find a complete

solution. Both correctRounding and correctTypos allow for partially repairing

a record, so in their case, the status is labeled “partial”.

Before After status

Eqs Ineqs Eqs Ineqs correctSigns correctRounding correctTypos

0 0 0 0 valid valid valid

0 m 0 m invalid invalid invalid

n 0 n 0 invalid invalid invalid

n 0 < n 0 N/A partial partial

n 0 0 0 corrected corrected corrected

n m n m invalid invalid invalid

n m < n 0 N/A partial partial

n m < n < m N/A partial partial

n m 0 0 corrected corrected corrected

� valid: The record violates none of the edit rules defined by the user.

� corrected: The record violated one or more edit rules but the correct-

function could adapt the record so no rules are violated afterwards.

� partial: The record violated one ore more edit rules. Some, but not all

violations could be repaired.

� invalid: The records violates one or more edit rules. None of them could

be repaired.

� NA: The record contains missing values, therefore edit violation cannot

be establised.

The other columns of the status slot depend on the function which created

the object and can provide more details on the chosen solutions. These are

described in the coming sections.
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1.3 Balance accounts and totally unimodular matrices

Most algorithms described here have been designed with financial balance ac-

counts in mind. The balance accounts encountered in establishment surveys

mostly involve integer records since financial amounts are usually reported in

currency (kilo-)units. Therefore, linear edit rules of the form

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm, (3)

are frequently encountered. In all the examples of financial balance accounts en-

countered by the authors, the matrix A happened to be totally unimodular. A

(not necessarily square) matrix is called totally unimodular when every square

submatrix has determinant −1, 0, or 1. The scapegoat algorithm (Scholtus,

2008), which is used in the correctRounding function, requires A to be totally

unimodular. See appendix B of Scholtus (2008) for a further discussion of total

unimodularity. The deducorrect package offers the function isTotallyUni-

modular which checks if a matrix is totally unimodular. The algorithm follows

a recursive procedure given below.
1: procedure isTotallyUnimodular(A)
2: A←reduceMatrix(A)
3: if A = ∅ then
4: return TRUE
5: else if Each column of A has exactly 2 nonzero elements then
6: return hellerTompkins(A)
7: else
8: A ←raghavachari(A)
9: if Every A ∈ A isTotallyUnimodular(A) then

10: return TRUE
11: else
12: return FALSE
13: end if
14: end if
15: end procedure

Here, reduceMatrix iteratively removes all rows and columns of A which

have at most one nonzero element (an operation of O(n) in the number of

columns and rows). When possible, the criterion of Heller and Tompkins (1956),

which is O(2n) in the number of columns is used to determine unimodular-

ity. If this is not possible, a set of smaller matrices A is derived with the

method of Raghavachari (1976). Every matrix in A is subsequently checked

for total unimodularity by calling isTotallyUnimodular. In the worst case,

Raghavachari’s method must be called recursively and checking for unimodu-

larity is O(n!) in the number of columns. For this reason, our implementation is

set up so that Raghavachari’s method is used only after the reduction method

and the Heller-Tompkins method have been tried. Also, matrices are trans-

posed to make sure that n is minimized in every step. In practical applications
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A is often fairly sparse and only a small portion of A has to be treated with

the Raghavachari method.

2 correctRounding

2.1 Area of application

This function can be used to correct violations of linear equality restrictions

because of rounding errors in one or more variables. The rounding errors are

assumed to be measurement errors rather than rounding errors caused by ma-

chine computation. Rounding errors caused at measurement are on the order

of a unit of measurement, much larger than errors caused by machine compu-

tation. The linear equality restrictions must be of the form

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm,

where A is a totally unimodular matrix (see Section 1.3), which can be tested

with the function isTotallyUnimodular. Linear inequalities with real coeffi-

cients can be imposed as well. The correctRounding function will only return

solutions which do not violate any extra inequality violations.

2.2 How it works

The correctRounding function uses the scapegoat algorithm described in Schol-

tus (2008) to suggest corrections for linear equality violations. Linear inequali-

ties are ignored, except that corrections which cause new inequality violations

are not accepted. The algorithm first selects linear edit rules violated by round-

ing errors. Rounding errors cause small deviations from equality and therefore

deviations smaller than some ε (say, ε = 2) are assumed to stem from rounding

errors. Next, a number of variables –called scapegoat variables– are selected

randomly in such a way that rounding errors can be solved exactly and uniquely

by altering the drawn scapegoat variables. Note that the number of scapegoat

variables is not fixed and may vary over drawings. If the chosen solution hap-

pens to cause new inequality violations, the solution is rejected and a new set

of scapegoat variables is drawn. This is repeated at most k times. See Algo-

rithm 1 for a concise description of the basic procedure (without checking for

inequalities).

2.3 Examples

Here, we will reproduce the example of Scholtus (2008), Section 5.3.2. Consider
an integer-valued record with 11 variables, subject to the rules:
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Algorithm 1 Scapegoat algorithm
Input: Equality restriction matrix A and constant vector b, record x, rounding

tolerance ε.
1: Remove rows from the system Ax = b not satisfying |a · x− b| < ε.
2: if A 6= ∅ and ||Ax− b|| > 0 then
3: Randomly permute columns of A. Permute x accordingly.
4: Use QR decomposition to partition A columnwise in a square invertible

matrix A1 and remaining columns A2. Partition x in x1 and x2 accordingly.
5: x1 ← A−1

1 (b−A2x2)
6: Unpermute [x1, x2]
7: end if
8: Restore x by adding the previously removed elements.

Output: x

> E <- editmatrix( c("X1 + X2 == X3"

+ ,"X2 == X4"

+ ,"X5 + X6 + X7 == X8"

+ ,"X3 + X8 == X9"

+ ,"X9 - X10 == X11"))

Consider also the following inconsistent record:

> (dat <- data.frame(t(c(12, 4, 15, 4, 3, 1, 8, 11, 27, 41, -13))))

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 12 4 15 4 3 1 8 11 27 41 -13

> violatedEdits(E, dat)

e1 e2 e3 e4 e5
[1,] TRUE FALSE TRUE TRUE TRUE

As reported by the violatedEdits function, this record violates edit rules 1,

3, 4, and 5.

Repairing the record can be done with

> set.seed(1)

> sol <- correctRounding(E, dat)

> cbind(sol$corrected, sol$status)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 status attempts
1 12 4 16 4 3 1 8 12 28 41 -13 corrected 1

> sol$corrections

row variable old new
X3 1 X3 15 16
X8 1 X8 11 12
X9 1 X9 27 28
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Here, we used set.seed to make results reproducible. The result is not exactly

the same as the solution found in the reference. Here, variables x3, x8 and x9

have been adapted, while in the reference x3, x4, x8, x9, and x10 were adapted.

Since corrections are very small, smearing out the effect of adaptations over a

number of variables is a reasonable option.

3 correctTypos

3.1 Area of application

This function can be used to correct typographical errors in an integer record.

Examples of typographical errors include extra or to few digits, digit permuta-

tions and/or digit substitutions. To be precise, the method can be applied to

integer records x which violate linear equality constraints as in Eq. (3):

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm.

In fact, the function will also run when A ∈ Rm×n. However, the nature of the

algorithm is such that it is unlikely that typing errors will be found for such

systems. The algorithm was developed with sets of financial balance equations

in mind, where these type of problems are very common. As far as inequalities

are concerned, they are currently ignored by the algorithm, in the sense that no

attempt is made to repair inequality violations. However, the algorithm does

not generate solutions causing extra inequality violations.

The function has a parameter ε which allows for a tolerance so that rounding

errors can be ignored. The default value of ε is almost zero: it is set to the

square root of .Machine$double.eps which amounts to approximately 10−8.

The value should be increased, to 2 units of measurement for example, to allow

for rounding errors that are caused by measurement rather then machine com-

putation. This way, records containing just rounding errors can be ignored by

correctTypos but do note that in that case they will receive the status valid,

since no typos were found.

3.2 How it works

In short, the algorithm first computes a list of suggestions which correct one or

more violated edits (Algorithm 2). The corrections not corresponding to a ty-

pographical error are removed, after which the set of suggestions that maximize

the number of satisfied edit rules is determined (Algorithm 3).

Suggestions are generated for the set of variables which only occur in violated

edits since altering these variables will have no effect on already satisfied edits.
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For every variable xj , define the matrix A(j) who’s rows represent edits con-

taining xj . Suggestions x̃
(i)
j for every row i of A(j) can be generated by solving

for xj :

x̃
(i)
j =

1

A
(j)
ij

bi −
∑
j′ 6=j

A
(j)
ij′ xj

 . (4)

We keep only the unique suggestions, and reject solutions which are more than

a certain Damerau-Levenshtein distance removed from the original value. The

Damerau-Levenshtein distance dDL between two strings s and t is the minimum

number of character insertions, deletions, substitutions and transpositions nec-

essary to change s into t or vice versa (Damerau, 1964; Levenshtein, 1966). The

remaining set of suggestions {x(i)
j } will in general contain multiple suggestions

for each violated edit i and multiple suggestions for each variable xj . Using a

tree search algorithm, a subset of {x(i)
j } is selected which maximizes the number

of resolved edits. The tree search is sped up considerably by pruning branches

which resolve the same edit multiple times or use multiple suggestions for the

same variable. When multiple solutions are found, only the variables which

obtain the same correction suggestion in each solution are adapted.

This algorithm generalizes the algorithms of Scholtus (2009) in the following

two ways: first, the imposed linear restrictions are generalized from Ax = 0 to

Ax = b. Secondly, the original algorithm allowed for a single digit insertion,

deletion, transposition or substitution. The more general Damerau-Levenshtein

distance used here treats the digits as characters, allowing for sign changing,

which is forbidden if only digit changes are allowed. Also, by applying a stan-

dard Damerau-Levenshtein algorithm it is easy to allow for corrections span-

ning larger values dDL. That is, one could allow for multiple typos in a single

field. Moreover, the Damerau-Levenshtein distance as implemented in the de-

ducorrect package allows one to define different weights to the four types of

operations involved, adding some extra flexibility to the method.

3.3 Examples

In this section we show the most important options of the correctTypos func-

tion. After a simple, worked-out example we reproduce the results in Chapter

4 of Scholtus (2009).

First, define a simple one-record dataset with an associated edit rule.

> dat <- data.frame(x = 123, y = 192, z = 252)

> (E <- editmatrix("z == x + y"))

Edit matrix:
x y z Ops CONSTANT

14



Algorithm 2 Generate solution candidates
Input: Record x, a set of linear equality restrictions and a list of variables to

fixate. A maximum Damerau-Levenshtein distance maxdist.
1: L← ∅
2: Determine J0 = {j : xj occurs only in violated edits and not in fixate}
3: for j ∈ J0 do
4: Determine the matrix A(j) of violated edits containing xj and associated

constant vector b(j)

5: for every row i of A(j) do
6: x̃

(i)
j ←

(
b
(j)
i −

∑
j′ 6=j A

(j)
ij′ xj′

)
/A

(j)
ij

7: L← L ∪ x̃
(i)
j . Only new values are added

8: end for
9: end for

10: Remove x̃
(i)
j from L for which dDL(x̃(i)

j , xj) > maxdist
Output: List L of m unique solution suggestions for record x.

Algorithm 3 Maximize number of resolved edits
Input: Record x, a list of linear equality restrictions and a list of solution

suggestions L = {L` = x̃
(i`)
j`

: ` = 1, 2, . . . ,m}
1: k ← 0
2: s← NULL
3: procedure tree(x, L)
4: if L 6= ∅ then
5: tree(x, L\L1) . Left branch: don’t use suggestion
6: xj1 ← L1 . Right branch: use suggestion
7: L← L\{x(i`)

j`
∈ L : j` = j1 or x

(i`)
j`

occurs in same edit as L1}
8: tree(x, L)
9: else

10: if Number of edits n resolved by x larger then k then
11: k ← n
12: s← x
13: end if
14: end if
15: end procedure
Output: (partial) solution s, resolving maximum number of edits.

e1 -1 -1 1 == 0

Edit rules:
e1 : z == x + y

Obviously, the edit in E is not satisfied since 123 + 192 = 315. As can be seen

from the output of editmatrix, we have b = 0, so the correction candidates

here are:

x̃(1) = 0− −1 · 192 + 1 · 252
−1

= 60 (5)

ỹ(1) = 0− −1 · 123 + 1 · 252
−1

= 129 (6)
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z̃(1) = 0− −1 · 123− 1 · 192
1

= 315 (7)

The Damerau-Levenshtein distances between the candidates and their originals

are given by:

dDL(x̃(1), x) = dDL(60, 123) = 3 (two substitutions, one insertion) (8)

dDL(ỹ(1), y) = dDL(129, 192) = 1 (one transposition) (9)

dDL(z̃(1), z) = dDL(315, 252) = 3 (three substitutions) (10)

In this case, there is just one candidate with dDL = 1, solving the inconsistency
with just one digit transposition. Running the record through correctTypos
indeed finds the digit transposition:

> correctTypos(E, dat)$corrected

x y z
1 123 129 252

Scholtus (2009) (Chapter 4) treats a series of examples which we will reproduce
here. We consider a dataset with 11 variables, subject to the following edit
rules.

> E <- editmatrix( c("x1 + x2 == x3"

+ ,"x2 == x4"

+ ,"x5 + x6 + x7 == x8"

+ ,"x3 + x8 == x9"

+ ,"x9 - x10 == x11"))

The following dataframe contains the correct record (example 4.0) as well as
the manipulated erroneous records.

> dat

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137
example 4.1 1452 116 1568 161 323 76 12 411 1979 1842 137
example 4.2 1452 116 1568 161 323 76 12 411 19979 1842 137
example 4.3 1452 116 1568 161 0 0 0 411 19979 1842 137
example 4.4 1452 116 1568 161 323 76 12 0 19979 1842 137

This data.frame can be read into R by copying the code from the correctTy-

pos help page. As can be seen, example 4.1 has a single digit transposition in

x4, example 4.2 has the same error, and an extra 9 inserted in x9, example 4.3

contains multiple extra errors (in x5, x6 and x7 which cannot be explained by

simple typing errors. Finally, example 4.4 also has multiple errors which cannot

all be explained by simple typing errors. This example has multiple solutions

which solve an equal amount of errors.

The violated edit rules may be listed with the function
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> violatedEdits(E, dat)

e1 e2 e3 e4 e5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE TRUE FALSE FALSE FALSE
[3,] FALSE TRUE FALSE TRUE TRUE
[4,] FALSE TRUE TRUE TRUE TRUE
[5,] FALSE TRUE TRUE TRUE TRUE

Now, to apply as many typo-corrections as possible:

> sol <- correctTypos(E, dat)

> cbind(sol$corrected, sol$status)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 status
example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137 valid
example 4.1 1452 116 1568 116 323 76 12 411 1979 1842 137 corrected
example 4.2 1452 116 1568 116 323 76 12 411 1979 1842 137 corrected
example 4.3 1452 116 1568 116 0 0 0 411 1979 1842 137 partial
example 4.4 1452 116 1568 116 323 76 12 0 19979 1842 137 partial

Our implementation finds the exact same solutions as in the original paper of

Scholtus (2009). Also see this reference for a thorough analysis of the results.

4 correctSigns

4.1 Area of application

This function can be used to solve sign errors and value swaps which cause linear

equalities to fail. Possible presence of linear inequalities are taken into account

when resolving errors, but they are not part of the error detection process. The

function has an argument ε which allows one to ignore rounding errors that

can mask sign errors and value swaps. The standard value is the square root of

machine accuracy (.Machine$double.eps). It should be increased to 2 units of

measurement or more to account for rounding errors caused by measurement.

4.2 How it works

The function correctSigns tries to change the sign of (combinations of) vari-

ables and/or swap the order of variables to repair inconsistent records. Sign

flips and value swaps are closely related since

−(x− y) = y − x, (11)

These simple linear relations frequently occur in profit-loss accounts for exam-

ple. Basically, correctSigns first tries to correct a record by changing one
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sign. If that doesn’t yield any solution, it tries changing two, and so on. If the

user allows value swaps as well, it starts by trying to correct the record with a

single sign flip or variable swap. If no solution is found, all combinations of two

such actions are tried, and so on. The algorithm only treats the variables which

have nonzero coefficients in one of the violated equality constraints. Since the

number of combinations grows exponentially with the number of variables to

treat, the user is given some control over the volume of the search space to

cover in a three different ways.

1. The variables which are allowed to flip signs or variable pairs which may be

interchanged simultaneously can be determined by the user. Knowledge

of the origin of the data will usually give a good idea on which variables

are prone to sign errors. For example, in surveys on profit-loss accounts,

respondents sometimes erroneously submit the cost as a negative number.

Once variables which may change sign, and variable pairs which may be per-

muted are determined, the number of combinations may still become large. If

there are n possible sign flips and value swaps, there are
∑

k

(
n
k

)
= 2n possible

repair actions in total. The second option allows the user to

2. limit the maximum number k of simultaneous sign flips and/or value

swaps that may be tested. This is controlled by the maxActions parameter

in Algorithm 4.

Since the function tries to repair the record with k = 1, k = 2, . . ., an extra

control parameter allows the user to

3. exit the function when the number of combinations
(
n
k

)
becomes too large.

This is controlled by the maxCombinations parameter in Algorithm 4.

To account for sign errors and variable swap errors which are masked by round-

ing errors, the user can provide a nonnegative tolerance ε, so the set of equality

constraints are checked as

|Ax− b| < ε, (12)

elementwise.

The function tries to find and apply the minimal number of actions (sign flips

and/or variable swaps) necessary to repair the record. It is not guaranteed

that a solution exists, nor that the solution is unique. If multiple solutions are

found, the solution which minimizes a weight is chosen. The user has the option

to assign weights to every variable, or to every action. The total weight of a
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Algorithm 4 Record correction for correctSigns
Input: A numeric record x, a tolerance ε. A set of equality and inequality

constraints of the form
Ax = b

Bx ≤ c,

A list flip of variables of which the signs may be flipped, a list swap of vari-
able pairs of which the values may be interchanged, an integer maxActions,
an integer maxCombinations and a weight vector.

1: Create a list actions, of length n containing those elements of flip and
swap that affect variables that occur in violated rows of A.

2: Create an empty list S.
3: k ← 0
4: while S = ∅ and k < min(maxActions, n) do
5: if not

(
n
k

)
> maxCombinations then

6: k ← k + 1
7: Generate all

(
n
k

)
combinations of k actions.

8: Loop over those combinations, applying them to x. Add solutions
obeying |Ax− b| < ε and Bx ≤ c to S.

9: end if
10: end while
11: if not S = ∅ then
12: Compute solution weights and choose solution with minimum weight.

Choose the first solution in the case of degeneracy.
13: end if
14: Apply the chosen solution, if any, to x.
Output: x

solution is the sum over the weights of the altered variables or the sum over

the weight of the actions performed. Actions with higher weight are therefore

less likely to be performed and variables with higher weight are less likely to be

altered.

This algorithm is a generalization of the original algorithms in Scholtus (2008)

in two ways. First, the original algorithm was designed with a specific type

of profit-loss account in mind, while the algorithm of deducorrect can handle

any set of linear equalities. Second, the original algorithm was not designed to

take account of inequality restrictions, which is a feature of the algorithm in

this work. In Section 4.4 it is shown how the results of the original example

can be reproduced.

4.3 Some simple examples

In this section we walk through most of the options of the correctSigns func-
tion. We will work with the following six records as example.

> (dat <- data.frame(

+ x = c( 3, 14, 15, 1, 17, 12.3),
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+ y = c(13, -4, 5, 2, 7, -2.1),

+ z = c(10, 10,-10, NA, 10, 10 )))

x y z
1 3.0 13.0 10
2 14.0 -4.0 10
3 15.0 5.0 -10
4 1.0 2.0 NA
5 17.0 7.0 10
6 12.3 -2.1 10

We subject this data to the rule

z = x− y. (13)

With the editrules package, this rule can be parsed to an editmatrix.

> E <- editmatrix(c("z == x-y"))

Obviously, not all records in dat obey this rule. This can be checked with a
function from the editrules package:

> cbind(dat, violatedEdits(E, dat))

x y z e1
1 3.0 13.0 10 TRUE
2 14.0 -4.0 10 TRUE
3 15.0 5.0 -10 TRUE
4 1.0 2.0 NA NA
5 17.0 7.0 10 FALSE
6 12.3 -2.1 10 TRUE

Records 1, 2, 3 and 6 violate the editrule, record 5 is valid and for record 4
validity cannot be established since it has no value for z. If correctSigns is
called without any options, all variables x, y and z can be sign-flipped:

> sol <- correctSigns(E, dat)

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new
1 1 z 10 -10
2 2 y -4 4
3 3 z -10 10
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So, the first three records have been corrected by flipping the sign of z, y and z
respectively. Since no weight parameter was given, the weight in the output is
just the number of variables whose have been sign-flipped. The degeneracy col-
umn records the number of solutions with equal weight that were found for each
record. Record 4 is not treated, since validity could not be established, record
5 was valid to begin with and record 6 could not be repaired with sign flips.
However, record 6 seems to have a rounding error. We can try to accommodate
for that by allowing a tolerance when checking equalities.

> sol <- correctSigns(E, dat, eps = 2)

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new
1 1 z 10.0 -10.0
2 2 y -4.0 4.0
3 3 z -10.0 10.0
4 6 y -2.1 2.1

Indeed, changing the sign of y in the last record brings the record within the
allowed tolerance. Suppose that we have so much faith in the value of z, that
we do not wish to change its sign. This can be done with the fixate option:

> sol <- correctSigns(E, dat, eps = 2, fixate = "z")

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap
1 -3.0 -13.0 10 corrected 2 1 2 0
2 14.0 4.0 10 corrected 1 1 1 0
3 -15.0 -5.0 -10 corrected 2 1 2 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new
1 1 x 3.0 -3.0
2 1 y 13.0 -13.0
3 2 y -4.0 4.0
4 3 x 15.0 -15.0
5 3 y 5.0 -5.0
6 6 y -2.1 2.1
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Indeed, we now find solutions without changing z, but at the price of more sign
flips. By the way, the same result could have been obtained by

> correctSigns(E, dat, flip = c("x", "y"))

The sign flips in record one and three have the same effect of a variable swap.
Allowing for swaps can be done as follows.

> sol <- correctSigns(E, dat, swap=list(c("x","y")),

+ eps=2, fixate="z")

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 4.0 10 corrected 1 1 1 0
3 5.0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new
1 1 x 3.0 13.0
2 1 y 13.0 3.0
3 2 y -4.0 4.0
4 3 x 15.0 5.0
5 3 y 5.0 15.0
6 6 y -2.1 2.1

Notice that apart from swapping, the algorithm still tries to correct records

by flipping signs. What happened here is that the algorithm first tries to flip

the sign of x, then of y, and then it tries to swap x and y. Each is counted

as a single action. If no solution is found, it starts trying combinations. In

this relatively simple example the result turned out well. In cases with more

elaborate systems of equalities and inequalities, the result of the algorithm

becomes harder to predict for users. It is therefore in general advisable to

� Use as much knowledge about the data as possible to decide which vari-

ables to flip sign and which variable pairs to swap. The problem treated

in section 4.4 is a good example of this.

� Keep flip and swap disjunct. It is better to run the data a few times

times through correctSigns with different settings.

Not allowing any sign flips can be done with the option flip=c().

> sol <- correctSigns(E, dat, flip = c(), swap = list(c("x", "y")))

> cbind(sol$corrected, sol$status)
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x y z status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 -4.0 10 invalid 0 0 0 0
3 5.0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new
1 1 x 3 13
2 1 y 13 3
3 3 x 15 5
4 3 y 5 15

This yields less corrected records. However running the data through

> correctSigns(E, sol$corrected, eps = 2)$status

status weight degeneracy nflip nswap
1 valid 0 0 0 0
2 corrected 1 1 1 0
3 valid 0 0 0 0
4 <NA> 0 0 0 0
5 valid 0 0 0 0
6 corrected 1 1 1 0

will fix the remaining edit violations. The last two statements are easier to

interpret than the one before that.

4.4 Sign errors in a profit-loss account

Here, we will work through the example of chapter 3 of Scholtus (2008). This
example considers 4 records, labeled case a, b, c, and d, which can be defined
in R as

> dat <- data.frame(

+ case = c("a","b","c","d"),

+ x0r = c(2100,5100,3250,5726),

+ x0c = c(1950,4650,3550,5449),

+ x0 = c( 150, 450, 300, 276),

+ x1r = c( 0, 0, 110, 17),

+ x1c = c( 10, 130, 10, 26),

+ x1 = c( 10, 130, 100, 10),

+ x2r = c( 20, 20, 50, 0),

+ x2c = c( 5, 0, 90, 46),

+ x2 = c( 15, 20, 40, 46),

+ x3r = c( 50, 15, 30, 0),

+ x3c = c( 10, 25, 10, 0),

+ x3 = c( 40, 10, 20, 0),

+ x4 = c( 195, 610,-140, 221))
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A record consists of 4 balance accounts of which the results have to add up to a
total. Each xi,r denotes some kind of revenue, xic some kind of cost and xi the
difference xi,r − xi,c. There are operating, financial, provisions and exceptional
incomes and expenditures. The differences x0, x1, x2 and x3 have to add up to
a given total x4. These linear restrictions must be defined with the use of the
editrules package.

> E <-editmatrix(c(

+ "x0 == x0r - x0c",

+ "x1 == x1r - x1c",

+ "x2 == x2r - x2c",

+ "x3 == x3r - x3c",

+ "x4 == x0 + x1 + x2 + x3"))

> E

Edit matrix:
x0 x0c x0r x1 x1c x1r x2 x2c x2r x3 x3c x3r x4 Ops CONSTANT

e1 1 1 -1 0 0 0 0 0 0 0 0 0 0 == 0
e2 0 0 0 1 1 -1 0 0 0 0 0 0 0 == 0
e3 0 0 0 0 0 0 1 1 -1 0 0 0 0 == 0
e4 0 0 0 0 0 0 0 0 0 1 1 -1 0 == 0
e5 -1 0 0 -1 0 0 -1 0 0 -1 0 0 1 == 0

Edit rules:
e1 : x0 + x0c == x0r
e2 : x1 + x1c == x1r
e3 : x2 + x2c == x2r
e4 : x3 + x3c == x3r
e5 : x4 == x0 + x1 + x2 + x3

Checking which records violate what edit rules can be done with the violat-
edEdits function of editrules.

> violatedEdits(E, dat)

e1 e2 e3 e4 e5
[1,] FALSE TRUE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE TRUE FALSE
[3,] TRUE FALSE TRUE FALSE TRUE
[4,] TRUE TRUE TRUE FALSE TRUE

So record 1 (case a) for example, violates the restrictions e1: x1 = x1,r − x1,c

and e5, x0 + x1 + x2 + x3 = x4. We can try to solve the inconsistencies by
allowing the following flips and swaps:

> swap <- list(

+ c("x1r","x1c"),

+ c("x2r","x2c"),

+ c("x3r","x3c"))

> flip <- c("x0","x1","x2","x3","x4")
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Trying to correct the records by just flipping and swapping variables indicated

above corresponds to trying to solve the system of equations

x0s0 = x0,r − x0,c

x1s1 = (x1,r − x1,c)t1
x2s2 = (x2,r − x2,c)t2
x3s3 = (x3,r − x3,c)t3
x4s4 = x0s0 + x1s1 + x2s2 + x3s3

(s0, s1, s2, s3, s4, t1, t2, t3) ∈ {−1, 1}8 ,

(14)

where every si corresponds to a sign flip and tj corresponds to a value swap,
see also Eqn. (3.4) in Scholtus (2008). Using the correctSigns function, we
get the following.

> cor <- correctSigns(E, dat, flip = flip, swap = swap)

> cor$status

status weight degeneracy nflip nswap
1 corrected 1 1 1 0
2 corrected 2 1 0 2
3 corrected 2 1 1 1
4 invalid 0 0 0 0

As expected from the example in the reference, the last record could not be
corrected because the solution is masked by a rounding errors. This can be
solved by allowing a tolerance of two measurements units.

> cor <- correctSigns(E, dat, flip = flip, swap = swap, eps = 2)

> cor$status

status weight degeneracy nflip nswap
1 corrected 1 1 1 0
2 corrected 2 1 0 2
3 corrected 2 1 1 1
4 corrected 2 1 2 0

> cor$corrected

case x0r x0c x0 x1r x1c x1 x2r x2c x2 x3r x3c x3 x4
1 a 2100 1950 150 0 10 -10 20 5 15 50 10 40 195
2 b 5100 4650 450 130 0 130 20 0 20 25 15 10 610
3 c 3250 3550 -300 110 10 100 90 50 40 30 10 20 -140
4 d 5726 5449 276 17 26 -10 0 46 -46 0 0 0 221

The latter table corresponds exactly to Table 2 of Scholtus (2008).
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5 Final remarks

This paper demonstrates our implementation of three data correction methods,

initially devised by one of us (Scholtus (2008, 2009)). With the deducorrect R

package, users can correct numerical data records which violate linear equality

restrictions for rounding errors, typographical errors and sign errors and/or

value transpositions. Since both the algorithms correcting for typographical

and sign errors can take rounding errors into account, a typical data-cleaning

sequence would be to start with correcting for sign- and typographical errors,

ignoring rounding errors and subsequently treating the rounding errors. We

note that data cleaning can be sped up significantly if independent blocks of

editrules are treated separately. If an matrix representation of a set of edits can

be written as a direct sum A = A1 ⊕A2, data can be treated for editrules in

A1 and A2 independently. The editrules package offers functionality to split

editmatrices into blocks via the findblocks function.
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A Some notes on the editrules package

The editrules package (De Jonge and van der Loo, 2011) is a package for

reading, parsing and manipulating numerical and categorical editrules. It offers

functionality to conveniently construct edit matrices from verbose edit rules,

stated as R statements. As an example consider the following set of edits on

records with profit p, cost c, and turnover t.
t ≥ 1

c ≥ 0

t = p + l

p < 0.6t.

(A.1)

The first two rules indicate that cost must be nonnegative, and turnover must

larger than or equal to 1. The third rule indicates that the profit-loss account

must balance, and the last rule indicates that profit cannot be more than 60% of

the turnover. Denoting a record as a vector (p, l, t), these rules can be denoted

as matrix equations:

[
0 0 1

0 1 0

]
p

l

t

 ≥

[
1

0

]
(A.2)

[
1 1 −1

]
p

l

t

 = 0 (A.3)

[
1 0 −0.6

]
p

l

t

 < 0 (A.4)

In the editrules package, these linear rules are all stored in a single object,
called an editmatrix. It can be constructed as follows:

> (E <- editmatrix(c(

+ "t >= 1",

+ "l >= 0",

+ "t == p + l",

+ "p < 0.6*t")))

Edit matrix:
t l p Ops CONSTANT

e1 -1.0 0 0 <= -1
e2 0.0 -1 0 <= 0
e3 1.0 -1 -1 == 0
e4 -0.6 0 1 < 0

Edit rules:
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e1 : 0 <= t + -1
e2 : 0 <= l
e3 : t == l + p
e4 : p < 0.6*t

An editmatrix object stores a stacked matrix representation of linear edit
restrictions. Alternatively, one can define edits as a matrix and cast it into an
editmatrix object:

> E <- matrix(c(

+ 1, 0, 0,

+ 0, 1, 0,

+ 1, -1,-1,

+ -0.6, 1, 1),

+ nrow=4,

+ byrow=TRUE,

+ dimnames=list(

+ 1:4,

+ c("t","l","p")

+ )

+ )

> b <- c(1,0,0,0)

> ops <- c(">=", ">=", "==", ">")

> (E <- as.editmatrix(E,b,ops))

Edit matrix:
t l p Ops CONSTANT

1 1.0 0 0 >= 1
2 0.0 1 0 >= 0
3 1.0 -1 -1 == 0
4 -0.6 1 1 > 0

Edit rules:
1 : t >= 1
2 : l >= 0
3 : t == l + p
4 : l + p > 0.6*t

There are more storage modes in editrules which we will not detail here.
Users can extract (in)equalities through the getOps function which returns a
vector of comparison operators for every row. For example:

> E[getOps(E)==">=", ]

Edit matrix:
t l p Ops CONSTANT

1 1 0 0 >= 1
2 0 1 0 >= 0

Edit rules:
1 : t >= 1
2 : l >= 0

Alternatively, the comparison operators of an edit matrix may be normalized:
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> editmatrix(editrules(E), normalize = TRUE)

Edit matrix:
t l p Ops CONSTANT

1 -1.0 0 0 <= -1
2 0.0 -1 0 <= 0
3 1.0 -1 -1 == 0
4 0.6 -1 -1 < 0

Edit rules:
1 : 0 <= t + -1
2 : 0 <= l
3 : t == l + p
4 : 0.6*t < l + p

The editrules package offers functionality to check data against any set of

editrules. The function violatedEdits, for example returns a boolean matrix

indicating which record violates what editrules. editrules also offers editrule

manipulation functionality, for example to split editmatrices into independent

blocks. For further functionality of the editrules package, refer to the package

documentation.
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