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1. Introduction

This paper is a review of Voronoi diagrams, Delaunay triangula-

tions, and many properties of specialized Voronoi diagrams. We will

also look at various algorithms for computing these diagrams. The

majority of the material covered is based on research compiled by At-

suyuki Okabe in Spatial Tessellations: Concepts and Applications of

Voronoi Diagrams [6]. However, there will also be references to re-

search and results presented in many papers. Multiple algorithms for

computing different diagrams were found and translated from, among

others, Centroidal Voronoi Tessellations: Applications and Algorithms

[3] and A Sweepline Algorithm for Voronoi Diagrams [4].

Section 2 will introduce Voronoi diagrams and provide examples of

where they can be seen and how they are applied. Sections 3 and

4 will discuss basic properties associated with Voronoi diagrams and

their duals: Delaunay triangulations. These building blocks will allow

the progression into discussing more complex ideas regarding Voronoi
1
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diagrams. In Section 5, there will be an exploration of weighted Voronoi

diagrams, followed by a study of different methods for constructing

Voronoi diagrams in Section 6. The last topic covered, in Section 7,

will be the idea of centroidal Voronoi diagrams and different algorithms

for their construction.

2. What is a Voronoi Diagram?

First, it should be noted that for any positive integer n, there are

n-dimensional Voronoi diagrams, but this paper will only be dealing

with two-dimensional Voronoi diagrams. The Voronoi diagram of a set

of “sites” or “generators” (points) is a collection of regions that divide

up the plane. Each region corresponds to one of the sites or generators,

and all of the points in one region are closer to the corresponding site

than to any other site. Where there is not one closest point, there is a

boundary. Note that in Figure 1, the point p is closer to p1 than to any

other enumerated points. Also note that p′, which is on the boundary

between p1 and p3, is equidistant from both of those points.

As an analogy, imagine a Voronoi diagram in R
2 to contain a series

of islands (our generator points). Suppose that each of these islands

has a boat, with each boat capable of going the same speed. Let every

point in R that can be reached from the boat from island x before any



A REVIEW OF PROPERTIES AND VARIATIONS OF VORONOI DIAGRAMS 3

Figure 1. A basic Voronoi diagram [6].

other boat be associated with island x. The region of points associated

with island x is called a Voronoi region.

The basic idea of Voronoi diagrams has many applications in fields

both within and outside the math world. Voronoi diagrams can be used

as both a method of solving problems or as a model for examples that

already exist. They are very useful in computational geometry, partic-

ularly for representation or quantization problems, and are used in the

field of robotics for creating a protocol for avoiding detected obstacles.

For modeling natural occurrences, they are helpful in the studies of

plant competition (ecology and forestry), territories of animals (zool-

ogy) and neolithic clans and tribes (anthropology and archaelogy), and

patterns of urban settlements (geography) [2].
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3. Basic Properties of the Voronoi Diagram

3.1. Formal Definition of the Voronoi Diagram. We have defined

a Voronoi diagram informally. Since we are going to be dealing with

mathematical problems associated with and algorithms for computing

the Voronoi diagram, we must formally define the two-dimensional or-

dinary Voronoi diagram.

First, we shall denote the location of a point pi as (xi1, xi2), and the

corresponding vector will be ~x. Let P = {p1, p2, .., pn} ∈ R
2, where

2 ≤ n < ∞ and pi 6= pj, i 6= j and ∀ i, j = 1, 2, . . . , n be the set of

generator points, or generators. We call the region given by

V (pi) = {~x
∣

∣ ||~x − ~xi|| ≤ ||~x − ~xj|| ∀j 3 i 6= j}

the Voronoi region of pi, where || · || is the usual Euclidean distance.

V (pi) may also be referred to as Vi. All Voronoi regions in an ordinary

Voronoi are connected and convex. We call the set given by

V = {V (p1), V (p2), . . . , V (pn)}

the Voronoi diagram of P . Different notation for V is
⋃n

i=1 Vi.

3.2. Basic Components of the Voronoi Diagram. The Voronoi

diagram is composed of three elements: generators, edges, and vertices.
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P is the set of generators. Every point on the plane that is not a vertex

or part of an edge is a point in a distinct Voronoi region.

An edge between the Voronoi regions Vi and Vj is Vi

⋂

Vj = e(pi, pj).

If e(pi, pj) 6= ∅, Vi and Vj are considered adjacent. Any point ~x on

e(pi, pj) has the property that ||~x − ~xi|| = ||~x − ~xj||. An edge can be

denoted as ei, where i is an index for the edges and does not have to

be related to the index of generator points. For example, we can label

our edges from 1 to n, n being the total number of edges, going top

to bottom left to right. The labelling of edges is merely a convenience,

and does not have to follow a pre-determined algorithm. It should be

decided per Voronoi diagram. Also, the set of edges surrounding a

Voronoi region Vi can be referred to as ∂V (pi), ∂Vi, or the boundary

of Vi.

A vertex is located at any point that is equidistant from the three

(or more) nearest generator points on the plane. Vertices are denoted

qi, and are the endpoints of edges. The number of edges that meet at

a vertex is called the degree of the vertex. If ∀qi ∈ V, degree(qi) = 3,

then V is considered to be non-degenerate. Otherwise, V is considered

to be degenerate. Throughout this paper, we will, for the most part,

assume non-degeneracy in our Voronoi diagrams.
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Figure 2. Voronoi Diagrams on Bounded Subsets of R
2 [6].

3.3. Voronoi Diagrams on a Bounded Subset of R
2. While most

of the time we will consider Voronoi diagrams on R
2, we can also have

them on any set S ⊆ R
2. We will assume S to be non-empty, for

a Voronoi diagram on an empty set would be trivial. The bounded

Voronoi diagram is defined by V∩S = {V1 ∩ S, V2 ∩ S, . . . , Vn ∩ S}.

If, for any i, Vi shares the boundary of S, we call Vi ∩ S a boundary

Voronoi region. Unlike ordinary Voronoi regions, boundary Voronoi

regions need not be connected or convex.

In Figure 2, we see two Voronoi diagrams generated by the same

set P , but on different subsets of R
2. In the left diagram, the shaded

region is not connected, and in both diagrams, many of the regions are

not convex. Note that the non-convex regions are boundary regions.

3.4. Dominance Regions. Given any two generators, pi and pj, the

perpendicular bisector of the line connecting pi and pj is b(pi, pj) =

{~x
∣

∣ ||~x − ~xi|| = ||~x − ~xj||}, i 6= j. H(pi, pj) = {~x
∣

∣ ||~x − ~xi|| ≤

||~x − ~xj||}, i 6= j is the dominance region of pi over pj, and consists of
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Figure 3. Construction of a Voronoi Region Using
Half-Planes [6].

every point of the plane that is closer to pi than pj or equidistant from

the two. H(pj, pi), or Dom(pj, pi), is the dominance region of pj over

pi. In the basic Voronoi diagram, H(pj, pi) is a half-plane.

From our definition of dominance regions, we can define Voronoi

regions in yet another way. Let P = {p1, p2, . . . , pn} ∈ R
2 be a set

of generator points. Vi =
⋂

j∈Z+≤n H(pi, pj) is the ordinary Voronoi

region associated with pi. The set V = {V1, V2, . . . , Vn} is the Voronoi

diagram on R
2 generated by P .

In Figure 3, we can see the construction of a Voronoi region using

dominance regions. By drawing in the half-planes associated with p1,

we can see how a Voronoi region is created using the method of finding

⋂

j∈Z+≤n H(pi, pj). Using this method for all of the points in a Voronoi
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Figure 4. A largest empty circle in a basic Voronoi di-
agram [6].

diagram becomes overly complicated, and is generally bypassed in lieu

of other algorithms, which will be discussed in Section 6.

3.5. The Convex Hull of P . The convex hull of P is the smallest

convex set containing the generator set P , and is denoted as CH(P ).

The boundary of this region is referred to as ∂ CH(P ). Given a Voronoi

diagram V(P ), Vi is unbounded iff pi ∈ ∂ CH(P ). With knowledge of

the CH(P ), we know the following about a Voronoi diagram V(P ):

(i) A Voronoi edge e(pi, pj)(6= ∅) is a line segment iff the line connecting

pi and pj (pipj) is not on ∂ CH(P ).

(ii) A Voronoi edge e(pi, pj)(6= ∅) is a half-line or ray iff P is non-

collinear and pi and pj are consecutive generator points on ∂ CH(P ).

(iii) All Voronoi edges are lines iff P is collinear.

3.6. Empty Circles. With a Voronoi diagram V(P ), it is helpful to

know about empty circles. An empty circle is one with no generator
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points within its boundary. For each vertex qi ∈ V(P ), there exists a

unique empty circle Ci centered at qi that passes through at least three

generator points, and it is the largest empty circle centered at qi. If we

assume non-degeneracy, then Ci passes through exactly three generator

points. Note that the largest empty circle represented in Figure 4 has

three generator points on its boundary.

3.7. Graph Theory and Voronoi Diagrams. Also interesting to

note are the correlations between basic graph theory and Voronoi di-

agrams. If we let n, ne, and nv be the number of generator points,

Voronoi edges, and Voronoi vertices of a Voronoi diagram, respectively.

We find that

(1) nv − ne + n = 1.

If P has more than 3 elements, then

ne ≤ 3n − 6 and nv ≤ 2n − 5

Furthermore, if we let nc be the number of unbounded Voronoi polygons

and continue to assume that P has more than 3 elements, then

nv ≥
1

2
(n − nc) + 1 and ne ≤ 3nv − nc − 3



10 ADAM DOBRIN

Figure 5. A Voronoi graph induced from a Voronoi di-
agram [6].

Another interesting theorem is that for any Voronoi diagram, the av-

erage number of Voronoi edges per Voronoi polygon does not exceed 6.

More accurately, this number is less than or equal to 2(3n−6)
n

.

In graph theory, let G be a connected planar graph. Let v, e, and f

be the number of vertices, edges, and faces in G, respectively. Euler’s

Theorem states that v − e + f = 2, and that 2e ≥ 3f and e ≤ 3v − 6

[7].

We can find a direct correspondence between Euler’s Theorem for

connected planar graphs and Eq. 1. Take a Voronoi diagram on R
2. Let

n, nb, nc, ne, and nv be the number of Voronoi regions, bounded Voronoi

regions, unbounded Voronoi regions, Voronoi edges, and Voronoi ver-

tices, respectively. We know that nv − ne + n = 1. Make any half-

line edges into line segments by capping them with a vertex. All new

vertices added are added to nv. Simultaneously, all but one of the un-

bounded Voronoi regions are subtracted from nc; one remains because
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of the infinite region. (Note: If we had no unbounded Voronoi regions

to begin with, we still have an infinite region not previously defined;

thus nc = 1.) Since we have included an extra Voronoi region, we’ve

altered our equation to be nv − ne + n = 2. Disregard our generator

set P . Our manipulated Voronoi diagram V has become a connected

planar graph G. The number of regions n becomes the number of faces

f in G. The number of vertices nv becomes the number of vertices v in

G. The number of edges ne becomes the number of edges e in G. Our

equation becomes v − e + f = 2, Euler’s Theorem.

4. Delaunay Tessellations

4.1. Introduction. Continuing the theme of graph theory, we will

now discuss Delaunay tessellations, which are considered to be dual

to Voronoi diagrams [7]. For all Delaunay tessellations, we will assume

non-collinearity. This means that for our generator set P , the points in

P are not all on the same line. Given a Voronoi diagram V(P ), join all

pairs of generator points whose Voronoi regions share an edge. Thus,

in the Delaunay tessellation of P , or D(P ), there exists the edge pipj

if and only if e(pi, pj) ∈ V(P ) 6= ∅. If this tessellation consists of only

triangles, we call it a Delaunay triangulation. If not, we call it a Delau-

nay pretriangulation. A Delaunay tessellation will be a triangulation if
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Figure 6. A Voronoi diagram and a Delaunay triangu-
lation [6].

and only if all vertices of V(P ) are non-degenerate. See Figure 6 for an

illustration of the relation between a Voronoi diagram (dashed lines)

and a Delaunay triangulation (solid lines) of the same generator set P

(solid dots).

In a Delaunay triangulation, regions are called Delaunay triangles.

Edges in Delaunay tessellations are called Delaunay edges. If a Delau-

nay edge is shared by two Delaunay triangles, then we call it an internal

Delaunay edge. Otherwise, we call it an external Delaunay edge. The

external Delaunay edges in D(P ) constitute ∂ CH(P ).

Interesting to note is the fact that (assuming non-degeneracy), Voronoi

edges and Delaunay edges are orthogonal. With a little thought, this

is fairly obvious, because a Voronoi edge e(pi, pj) lies on the perpen-

dicular bisector of pipj, a Delaunay edge. This means that Voronoi

diagrams and their Delaunay tessellations are not only dual graphs,

but are reciprocal figures [7].
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Figure 7. Delaunay triangulations: (a) is not a Pitte-
way triangulation, while (b) is a Pitteway triangulation
[6].

4.2. The Pitteway Triangulation. The Delaunay triangulation of P

is a Pitteway triangulation of P if and only if every internal Delaunay

edge pipj crosses the associated Voronoi edge e(pi, pj) of V(P ).

4.3. Correspondence Between Voronoi and Delaunay. We men-

tioned that Delaunay triangulations are non-degenerate duals to Voronoi

diagrams, but have not yet discussed the meaning and results of this

claim. Given a non-degenerate Voronoi diagram V(P ) and a Delaunay

triangulation D(P ), let Q and Qd be the sets of Voronoi vertices and

Delaunay vertices, respectively. Let E and Ed be the sets of Voronoi

edges and Delaunay edges, respectively. Let Cd be the set of circum-

centers of Delaunay triangles. Then the following are true:

(i) Qd = P

(ii) Cd = Q
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Figure 8. Empty circumcircles of Delaunay triangles
(i.e. Delaunay circles) in a Delaunay triangulation [6].

(iii)|Ed| = |E|

Statement (i) says that each generator point pi is a vertex of a Delaunay

triangle. Statement (ii) says that the circumcenter of each Delaunay

triangle corresponds to a Voronoi vertex. Statement (iii) says that the

number of Delaunay edges is equal to the number of Voronoi edges.

On a side note, the circumcenter of a Delaunay triangle, is the point

equidistant from the three vertices. It is the center of the circumcircle,

or Delaunay circle, which is the largest empty circle contained in a

Delaunay triangle. The circumcircle of the Delaunay triangle is an

empty circle only if the triangulation of P is a Delaunay triangulation.

The points on a Delaunay circle, which are Delaunay vertices, are called

natural neighbors. Two vertices are natural neighbors if and only if they

are connected by a Delaunay edge.
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To close, we will look at another interesting property of Delaunay

triangulations. Let D(pi, pj) be the shortest path along the Delaunay

edges of D(P ) from pi to pj. Then D(pi, pj) ≤ c ∗ d(pi, pj), where

d(pi, pj) is the Euclidean distance from pi to pj and c = 2π
3cos( π

6
)
≈ 2.42.

5. The Weighted Voronoi Diagram

5.1. Introduction. So far, in our discussion of Voronoi diagrams, we

have assumed that our generator points, besides their location, have

equal value, or weight. The idea of assigning distinct weight to genera-

tor points can be more useful than having uniformly weighted points in

some scenarios. Weighted generator points are sometimes more appli-

cable when looking at, for example, the population size of a settlement,

the number of stores in a shopping center, or the size of an atom in a

crystal structure [6].

Recall from our definition of the Voronoi diagram from Section 3.4.

that a Voronoi region Vi is the intersection of the dominance regions of

pi over every other generator point in P . While we will have different

formulae for dominance regions in weighted voronoi diagrams, the idea

remains the same. The dominance region of a generator point pi over

another, pj, where i 6= j and dw(px, py) is the weighted distance between
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points x and y, is written as

Domw(pi, pj) = {p|dw(p, pi) ≤ dw(p, pj)}.

Let

Vw(pi) =
⋂

pj∈P\{pi}

Domw(pi, pj).

Vw(pi), or Vw(i), is called a weighted Voronoi region, and

Vw = {Vw(p1), Vw(p2), . . . , Vw(pn)} is called the weighted Voronoi dia-

gram. Another way to denote Vw is V(P, dw), where P is the generator

set with weights W = {W1, W2, . . . , Wn} and dw is the weighted dis-

tance. We will discuss dw more in depth in the following sections.

5.2. The Multiplicatively Weighted Voronoi Diagram. Recall

the analogy of generator points to islands with boats from Section 2.

The multiplicatively-weighted Voronoi diagram assigns a speed to each

boat. Therefore, a faster boat will reach boats previously outside of its

region.

This weighted Voronoi diagram has its weighted distance given by

dmw(p, pi) =
||~x − ~xi||

wi

, where wi > 0.

This is called the multiplicatively weighted distance or MW-distance.

There are many names for the associated Voronoi diagram: Vmw, the
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multiplicatively-weighted Voronoi diagram, the MW-Voronoi diagram,

the circular Dirichlet tessellation, or the Apollonius model. We will

not be using the last two, as they are highly specialized and this paper

is a more general survey of ideas and concepts associated with Voronoi

diagrams.

A MW-Voronoi region is a non-empty set, it does not have to be

convex or connected, and it can have a hole or holes. A MW-Voronoi

region Vw(pi) is convex if and only if the weights of adjacent MW-

Voronoi regions are not smaller than the weight of pi. Another way

to denote “the weight of pi” is wi. Also, two MW-Voronoi regions

may share disconnected edges. Edges in Vmw are circular arcs if and

if only if the weights of the two affective regions are not equal. Edges

in Vmw are straight lines if and only if the weights of the two affective

regions are equal. See Figure 9 for a diagram of the bisectors between

points pi and pj with multiplicatively weighted distance for several

ratios α = wi

wj
= 1, 2, 3, 4, 5.

Let wmax = max{wj, pj ∈ P} and Pmax = {pj|wj = wmax}. A MW-

Voronoi region Vmw(pi) is unbounded if and only if pi ∈ Pmax and pi is

on ∂ CH(Pmax).

5.3. The Additively Weighted Voronoi Diagram. Continuing the

boat/island analogy, imagine that boats in the additively weighted



18 ADAM DOBRIN

Figure 9. Multiplicatively weighted Voronoi diagrams
for two generator points [6].

Figure 10. A multiplicately weighted Voronoi diagram
(the numbers in parentheses represent weights associated
with the generators) [6].
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Voronoi diagram start a certain distance away from their respective

islands. They all still travel at the same speed, but some boats begin

closer to points than they would in the ordinary Voronoi diagram.

This type of weighted Voronoi diagram has its weighted distance

given by

daw(p, pi) = ||~x − ~xi|| − wi.

The dominance region of the additively-weighted Voronoi diagram is

given by

Domaw(pi, pj) = {~x
∣

∣ ||~x − ~xi|| − ||~x − ~xj|| ≤ wi − wj}, where i 6= j.

If we let α = ||~xi − ~xj||, and β = wi − wj, we get the following

results. If α = β, then the dominance region of pj over pi is a half-line

radiating from pj directly away from pi. This result is impossible with

the multiplicatively-weighted Voronoi diagram. If 0 < α < β, then pi

completely dominates pj, and Vaw(pj) = ∅, another result not possible

with MW-Voronoi diagrams.

With these properties in mind, we find the following statements to

be true. The set Vaw(pi) = ∅ if and only if

min{||x − xi|| − wj, ∀pj ∈ P 3 i 6= j} < −wi.
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Figure 11. Additively weighted Voronoi diagrams for
two generator points [6].

The set Vaw(pi) is a half-line if and only if

min{||x − xi|| − wj, ∀pj ∈ P 3 i 6= j} = −wi.

The set Vaw(pi) has positive area if and only if

min{||x − xi|| − wj, ∀pj ∈ P 3 i 6= j} > −wi.

Every edge in Vaw is either a hyperbolic arc, line segment, half-line,

or infinite line. See Figure 11 for a diagram of the bisectors between

points pi and pj with additively weighted distance for several parameter

values α = ||~xi−~xj || and β = |wi−wj| = 0, 1, 2, 3, 4, 5, 6, 8, 9, 9.8, 10.
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Figure 12. An additively weighted Voronoi diagram
(the numbers indicate weights) [6].

If at least one weight, wi, is different from another, and Vaw(pi)

has positive area, then there exists at least one non-convex additively-

weighted Voronoi region. Every non-convex AW-Voronoi region is star-

shaped with respect to its generator point. This means that from pi,

we can draw a line to any point in the region Vaw(pi), and the line will

be contained entirely within Vaw(pi).

6. Algorithms for Constructing the Voronoi Diagram

6.1. Introduction. There are many different ways to construct the

ordinary Voronoi diagram (defined by dw = ||~x − ~xi||, i 6= j). In this

section, we will look at two of these: the Plane-Sweep and the Tree

Expansion and Deletion methods.

6.2. Plane-Sweep Method. For the plane-sweep method of construct-

ing the Voronoi diagram, we draw all generator points, Voronoi vertices,
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and Voronoi edges in a non-Cartesian plane. There is a one-to-one cor-

respondence between the non-Cartesian plane and the Cartesian plane,

given some initial assumptions. Therefore, we can copy our Voronoi di-

agram in the non-Cartesian plane to the Voronoi diagram in the Carte-

sian plane, which is what we ultimately want.

Let P = {p1, p2, . . . , pn} be our generator set. For any point p, we

define r(p) = min{d(p, pi)
∣

∣ 1 ≤ i ≤ n}. By the properties of Voronoi

diagrams, r(p) is the radius of the largest empty circle centered at p.

We shall denote the location of p as (x(p), y(p)). Let

φ(p) = (x(p) + r(p), y(p)).

In other words, for any point p ∈ Vi, φ(p) = (x(p) + d(p, pi), y(p)).

φ(p) = p if and only if p is a generator point. Any q ∈ V, e ∈ V,

Vi ∈ V, and V have images φ(q), φ(e), φ(Vi), and φ(V), respectively.

Let pi and pj be two generator points such that x(pi) > x(pj) where

e(pi, pj) 6= ∅. φ maps e(pi, pj) to part of a hyperbola with leftmost

point pi. We will cut this hyperbola at pi into h+(pi, pj) and h−(pi, pj).

h+(pi, pj) = h+(pj, pi) and h−(pi, pj) = h−(pj, pi).

To help the reader better understand φ(R2), we can draw an analogy

between it and R
2. Recall the boat/island analogy from before. Imag-

ine that there is a current, moving directly to the right, that is faster
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than the uniform-velocity abled boats. Therefore, no boat can reach a

point to the left of its island. Voronoi regions in φ(R2) are contained

within open-right hyperbolas.

For the plane-sweep method, we will need to make four initial as-

sumptions. First, numerical computation will be carried out in precise

arithmetic. Second, no four generator points align on a common circle.

This is the same as assuming non-degeneracy. Third, no two genera-

tor points align vertically. Lastly, any generator point and any of that

generator point’s Voronoi vertices do not align horizontally.

In this method, we take a vertical line and move it from left to right

over the plane. We update our data everytime there is an event, which

will be defined as:

:the sweepline hits a generator point.

:the sweepline hits a Voronoi vertex in φ(V).

To represent the structure of φ(V) along the sweepline, we will use

an alternating list L of regions and boundary edges which appear on

the line, from bottom to top. We will also use Q, a set of points in

the plane. It is a list of all possible points where events may occur.

To begin with, Q = P , the set of all generator points. Candidates for

Voronoi vertices φ(q) are added to Q as they are found by the sweepline.
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Figure 13. Voronoi diagram and its image: (a) Voronoi
diagram V for five generators and (b) its image φ(V) [6].

Given a set P = {p1, p2, . . . , pn} of n generator points, using the fol-

lowing algorithm, we will end up with the transformed Voronoi diagram

φ(V).

(1) Let Q = P .

(2) Choose and delete the leftmost point, say pi, from Q.

(3) Let L be a list consisting of a single region, φ(V (pi)).

(4) While Q is non-empty, repeat 4.a, 4.b, and 4.c.

(a) Choose and delete the leftmost point w from Q.

(b) If w is a generator point, say w = pi, do 4.b.i, 4.b.ii, and

4.b.iii.

(i) Find the region φ(V (pj)) on L containing pi.
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(ii) Replace (φ(V (pj))) on L with

(φ(V (pj)), h
−(pi, pj), φ(V (pi)), h

+(pi, pj), φ(V (pj))).

(iii) Add to Q the intersection of h−(pi, pj) with the im-

mediate lower-half hyperbola on L and the intersec-

tion of h+(pi, pj) with the immediate upper-half hy-

perbola on L.

(c) If w is an intersection, say w = φ(qt), do 4.c.i, 4.c.ii, 4.c.iii,

and 4.c.iv.

(i) Replace the subsequence (h±(pi, pj), φ(V (pj)), h
±(pj, pk))

on L with h = h−(pi, pk) or h = h+(pi, pk).

(ii) Delete from Q any intersections of h±(pi, pj) or h±(pj, pk)

with other half-hyperbolas.

(iii) Add to Q any intersections of h with its immediate

upper- and lower-half hyperbola on L.

(iv) Mark φ(qt) as a Voronoi vertex incident to h±(pi, pj),

h±(pj, pk), and h.

(5) Report all half-hyperbolas that were ever listed on L, all the

Voronoi vertices marked in 4.c.iv, and the incidence relations

among them. [6]
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From this algorithm, we have all edges, vertices, and generator points

of φ(V) on φ(R2). We now need to be able to convert a point φ(p) to

p ∈ R
2. We know to which generator points each edge and vertex

is associated. Call one of these generator points pi. We know that

φ(p) = (x(p) + r(p), y(p)). Let xi = x(pi), yi = y(pi), xφ = x(φ(p)),

and y = φ = y(φ(p)). Let m be the slope of the line between pi and

φ(p) and d be the Euclidean distance between pi and φ(p). m =
yφ−yi

xφ−xi

and d =
√

(yφ − yi)2 + (xφ − xi)2. From this, we find that

(2) r(p) =
d

2 cos(tan−1(m))
.

Our point,

(3) p = (xφ − r(p), yφ),

can now be written with Eq. 2 and Eq. 3:

(4) p = (xφ −
d

2 cos(tan−1(m))
, yφ).

Using the sweepline algorithm and Eq. 4, we can graph a Voronoi

diagram in φ(R2), then translate each point on an edge or vertex back

to R
2, giving us our Voronoi diagram V.
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6.3. Tree Expansion and Deletion Algorithm. While the Plane-

Sweep Method is a good system to construct the Voronoi diagram,

it is more useful as a programmable way to do so. Carrying out the

method by hand, or even with Maple or Mathematica, is a laborious

task, involving much more work than is actually necessary. For simpler

Voronoi diagrams (those with a relatively small generator set P ), we

can utilize a simpler algorithm. This algorithm takes a Voronoi diagram

on l−1 generator points and another generator point in the plane, and

gives a Voronoi diagram on l generator points.

To add pl, the lth generator point, we need to know the vertices of

Vl−1 that will be affected by V (pl). We can do so with the following

information. Let qijk denote the vertex incident to V (pi), V (pj), and

V (pk) in that order. For some point p = (x, y), we let H(pi, pj, pk, p) =

0 be the circle that passes through pi, pj, pk, and p. The circle contains

p if and only if H(pi, pj, pk, p) < 0. Consequently, qijk is in V (pl) if and

only if H(pi, pj, pk, pl) < 0. We will let

(5) H(pi, pj, pk, pl) =

∣
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(a) (b)

(c) (d)

Figure 14. Implementation of the Tree Expansion and
Deletion Algorithm.

Like the Plane-Sweep Method, we will need to make some basic

assumptions to begin. We will need non-degeneracy, so we will assume

that the degree of any vertex in Vl−1 is 3. A problem arises, though,

when H(pi, pj, pk, pl) = 0. When we add pl to Vl−1, we will have a

vertex of degree 4. To avoid this, we can change our inequality to say

that H(pi, pj, pk, pl) ≥ 0 if and only if qijk is outside of V (pl). We will

also assume that Vl−1 divides the plane into i + 1 regions; call them

cells. Assume that every cell, besides infinite ones, is simply connected

with no holes. Also, two cells share at most one edge.
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We will let T be the set of vertices of Vl−1 that will be in V (pl). As-

sume that T is non-empty. Also, assume that Vl−1(T ) (the components

of Vl−1 in T ) is a tree. Following the aforementioned assumptions and

given P = (p1, p2, . . . , pl−1, pl) and Vl−1, we will implement the follow-

ing procedure to compute a new Voronoi diagram Vl:

(1) Find the generator pi(1 ≤ i ≤ l − 1) such that d(pi, pl) is mini-

mized.

(2) Among the vertices qijk on ∂V (pi), find the one that gives the

smallest value of H(pi, pj, pk, pl). Let T be the set consisting of

only this vertex.

(3) Repeat 3.a until T cannot be further augmented.

(a) For each vertex qijk connected by an edge to an existing

element of T , add qijk to T if H(pi, pj, pk, pl) < 0 and

if the resultant T is a tree (satisfying one of our initial

assumptions).

(4) For every generator pi associated with a vertex qijk that satis-

fies assumption 4.6.7., draw the perpendicular bisector between

pi and pl from e(pi, pj) to e(pi, pk). Let this line segment be

e(pi, pl), the interesection of e(pi, pl) and e(pi, pj) be the vertex

qijl, and the intersection of e(pi, pl) and e(pi, pk) be the vertex

qikl. In the case that qijk lies on the outer circuit of Vl−1, draw
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the perpendicular bisector between pi and pl. When applicable,

the bisector is a segment from e(pi, pj) to e(pi, pk). In this case,

let this line segment be e(pi, pl), the intersection of e(pi, pl) and

e(pi, pj) be the vertex qijl, and the intersection of e(pi, pl) and

e(pi, pk) be the vertex qikl. If the bisector does not intersect ei-

ther e(pi, pj) or e(pi, pk), it will be a ray originating on e(pi, pm),

where pm is either pj or pk, whichever is associated edge inter-

sects with the perpendicular bisector. Let this ray be e(pi, pl),

and the intersection of e(pi, pl) and e(pi, pm) be the vertex qiml.

(5) Remove all vertices in T , and the edges incident to them, from

Vl−1.

(6) Consider the interior of the edges and vertices added in 4 to be

V (pl), and the resulting diagram to be Vl.

In Figure 14, we see the use of the Tree Expansion and Deletion

Algorithm on a Voronoi diagram with six generator points. The new

generator point affects only the central vertex. For the other three ver-

tices, H ≥ 0. In Figure 15, we see the implementation of the algorithm

on a Voronoi diagram that, while symmetrical, much more complicated

than in Figure 14. We find that H < 0 for four vertices.

To keep our vertices and regions organized, we have terms by which

we can refer to them. We call vertices in T in. Vertices outside of T
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(a) (b)

(c)

Figure 15. A Second Implementation of the Tree Ex-
pansion and Deletion Algorithm.

are out. During the algorithm, vertices that are as of yet unchecked are

undecided. We call polygons with a vertex in T incident and all other

polygons non-incident. All vertices and polygons are initially labelled

undecided and non-incident, respectively.
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7. The Centroidal Voronoi Diagram

7.1. Introduction. A centroidal Voronoi diagram, or tessellation, is

a Voronoi diagram of a given set such that every generator point is

also the centroid, or center of mass, of its Voronoi region. Typically,

centroidal Voronoi tessellations (CVT’s) have an associated density

function, ρ(x, y), on Ω, a subset of R
2.

7.2. Real-World Applications and Observations. Applications for

CVT’s cover a multitude of disciplines from computer science to urban

planning.

An interesting area in which CVT’s pop up is in the territorial behav-

ior of animals. For example, the male mouthbreeder fish, to establish

domain, will spit sand away from the center of its territory. For a high

enough density of fish introduced simultaneously into a body of water

with a uniform sandy floor, we find an interesting result. The spitting

of sand results in raised bars of sand, and, when viewed from above,

creates a pattern which very closely approximates a centroidal Voronoi

tessellation [3].

Also in biology, CVT’s appear in the cell division of animal and

plant cells. In a study of the development of starfish embryos, it was

found that a view of a layer of columnar cells in an arrangement in a
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hollow sphere showed the cells to closely match a centroidal Voronoi

tessellation [3].

Looking at urban planning ideas, we can see close correlations to

those of the CVT. If we just look at the convenience of mailbox place-

ment throughout a population, we make the following assumptions:

(1) A person will use the mailbox nearest to their home.

(2) The cost to a person of using a mailbox is a function of the

distance from the person to the mailbox.

(3) The cost to the general population is measured by the distance

to the nearest mailbox averaged over the population.

(4) The optimal placement of mailboxes is one that minimizes cost,

or the distance to the population in general.

It makes sense, then, that the optimal placement of mailboxes is at

the centroids of a CVT, using the population density as a basis for

generator points. We can use these ideas in many different aspects of

urban planning and the placement of resources. Schools, distribution

centers, mobile vendors, bus terminals, voting stations, and service

stops are some examples [3].

7.3. Generator Sets. The idea of the centroidal Voronoi tessellation

is somewhat limiting in terms of the various diagrams that we can
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produce. The original Voronoi diagrams that we considered have a one-

to-one correspondence between every possible set of generator points

P and the Voronoi diagram V(P ). The same is not true for centroidal

Voronoi tessellations: since not every Voronoi diagram is a CVT, we

cannot construct a CVT from just any given generator set.

In the discussion of the optimal placement of resources, we mentioned

population density, but did not explain why this was important. To

create a CVT, we need a generator set whose corresponding Voronoi

diagram has the property that each generator point is the centroid of

its Voronoi region. This implies that the problems that we will run

into when trying to find a CVT will lie solely in the generator set.

This is where the disparity between CVT’s and ordinary Voronoi

diagrams arises. The freedom that we have with regular Voronoi di-

agrams is important because we can visualize dominance regions and

distances given any set of data. CVT’s are limited in this sense, but, as

in the applications and observations mentioned in Section 7.2, they are

very useful for planning systems and noticing similarities in different

fields (like animals’ territorial habits and cell division).

7.4. Constructing a Generator Set. To create a CVT, we need

to find a generator set whose points are the mass centroids of their

respective Voronoi regions. There are many methods for doing so: the
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two that we will look at are Lloyd’s method and MacQueen’s method.

The general idea of these methods is to take an initial set of n points, P ,

then move them incrementally such that the resulting Voronoi diagram

is also a CVT.

To select an initial set of points, we use a Monte Carlo method. A

Monte Carlo method is any which solves a problem by generating suit-

able random numbers and observing only the fraction of the numbers

obeying some property or properties [5]. A Monte Carlo method is not

necessary to create a CVT: we could select n random points on Ω, then

use Lloyd or MacQueen’s method, and get a very similar, and for all

intents and purposes, the same result. The Monte Carlo method, in

effect, gives us a head start on creating the generator set for the CVT.

It gives us a set of n points that resembles our density function, ρ(x, y).

Because Lloyd and Macqueen’s methods take the n points and iterate

them to find a generator set for a CVT, which also resembles ρ, the

set found using a Monte Carlo method may be closer to our final set.

By using a Monte Carlo method, we save time overall by reducing the

number of iterations of Lloyd or MacQueen’s method.

7.5. Lloyd’s Method.

(1) Select an initial set of n points (P ) in Ω, by using a Monte

Carlo method.
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(2) Construct a Voronoi tessellation of Ω, V, associated with P .

(3) Compute the mass centroids of the Voronoi regions in V

(4) Let P be the set of mass centroids computed in Step 3.

(5) If P meets some predetermined criteria, implement Step 2, then

terminate; otherwise, return to Step 2.

7.6. MacQueen’s Method.

(1) Select an initial set of n points, (P ) in Ω, by using a Monte

Carlo method; let i = 1.

(2) Determine a point y in Ω by using the same Monte Carlo

method as in Step 1.

(3) Find the point p∗ in P that is closest to y.

(4) Set

p∗ =
ip∗ + y

i + 1

and i = i + 1.

(5) If P meets some predetermined criteria, go to Step 6; otherwise,

return to Step 2.

(6) Construct a Voronoi tessellation of Ω, V, associated with P .

7.7. Similarities and Differences. Lloyd and MacQueen’s methods

are very similar, but also very different. They differ just in their method
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of resetting P . For Lloyd’s method, every time we go through the cy-

cle of steps (an iteration), we are constructing a new Voronoi diagram.

Considering the fact that we probably must go through several hundred

iterations, this is a very time-consuming method for computers. For

MacQueen’s method, instead of recomputing the Voronoi diagrams, we

are simply moving a point, then checking our results with the “prede-

termined criteria.” With MacQueen’s method, though, we only move

one point at a time, instead of many points in the set. Lloyd’s method

gives a better approximation of a CVT, but the difference is not no-

table enough to justify its use over MacQueen’s method. Because of

this, we will use MacQueen’s method for constructing the CVT.

7.8. Stopping Criteria. Typically, we will have two different types

of criteria, but only use one for any given construction of a CVT. One

criterion will be the total number of iterations, i. The higher the num-

ber of iterations is, the closer V will be to an actual centroidal Voronoi

tessellation. The other type of criterion will be an error counter, ε. If

our set P remains relatively unchanged for a certain number of itera-

tions, then we consider MacQueen’s method completed. Because y is

chosen using a Monte Carlo method, it is possible that p∗ = y. Then,

P would be unchanged. Since this could happen on any given iteration,

we would want to set our error counter to cover multiple iterations. It
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(a) (b)

(c) (d)

Figure 16. 256-Point CVT’s Using a Probability Den-
sity Function of ρ(x, y) = xy on [−1, 1] × [−1, 1] with
Limits of: (a) i = 103, (b) i = 105, (c) ε = 10−4, and (d)
ε = 10−8.

is very rare that it would happen multiple times in a row. The lower

the error counter is, the closer V will be to an actual centroidal Voronoi

tessellation.

7.9. Imperfections in Constructing a CVT. It is important to

take note of the fact that we do not get CVT’s with either Lloyd or

MacQueen’s methods. We consider the approximations that we receive
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(a) (b)

(c) (d)

Figure 17. 256-Point CVT’s Using a Probability Den-
sity Function of ρ(x, y) = e−10x2y2

on [−1, 1] × [−1, 1]
with Limits of: (a) i = 103, (b) i = 105, (c) ε = 10−4,
and (d) ε = 10−8.

using these methods close enough to true CVT’s because the differences

between them are minimal. The only way to guarantee that the Voronoi

diagram of P that we get using Lloyd or MacQueen’s method is truly a

centroidal Voronoi diagram is by carrying the method out indefinitely.

This cannot be done for all practical purposes. Thus, we accept the

approximation that we make.
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7.10. Figures 16 and 17. In both Figures 16 and 17, (a) and (b)

are computed using an iteration limit, while (c) and (d) are computed

using an error counter. In Figure 16, note the difference between the

two diagrams on the left and the two on the right. In (a) and (c), we

see Voronoi regions bunched together that are relatively far away from

the points (−1,−1) and (1, 1). Some of these problems are corrected in

(b) and (d), as we can observe a better order of smaller regions closer

to those points than in (a) and (c). In Figure 17, we can see the same

general trends as in Figure 16. The smaller regions are closer to the

origin in (b) and (d) than in (a) and (c). These results are expected

because (b) uses a higher iteration limit than does (a), and (d) uses a

lower error counter than does (c). These results follow directly from

the ideas put forth in Section 7.8.

8. Conclusion

This paper is a survey of subjects closely related to Voronoi dia-

grams. There are many topics on Voronoi diagrams that were not cov-

ered in this paper. Future studies may include an analysis of problems

about properties of the types of Voronoi diagrams that are discussed

in this paper. A seemingly simple, and particularly interesting prob-

lem is, given the Voronoi edges of a non-degenerate, ordinary Voronoi
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diagram, to find the locations of the generator set P [6]. Also fasci-

nating are “post-office” problems, ones that, given a set of locations

(generators) and mail centers, finding an optimal and efficient algo-

rithm for which mail centers deliver to which location, and in what

order. Problems involving biological modeling using Voronoi diagrams

are very interesting as well. Charting patterns of crystal growth us-

ing additively- and multiplicatively-weighted Voronoi diagrams is an

interesting application of Voronoi diagrams to biological studies [2].

There are also many types of Voronoi diagrams with interesting

properties that are not included in this paper. For example, there

are many other metrics to use when computing weighted Voronoi di-

agrams. Compoundly-weighted Voronoi diagrams use a combination

of multiplicatively- and additively-weighted diagrams. Edges of CW-

weighted diagrams are fairly complex, and are either part of a fourth-

order polynomial curve, a hyperbolic arc, a circular arc, or a line seg-

ment, half-line, or line. The (additively-weighted) power distance to

a point is characterized by subtracting the weight of a generator from

the square of the Euclidean distance between the generator and the

point. Power diagrams contain only line segments, half-lines, and/or

lines. These two metrics of Voronoi diagrams are very useful in model-

ing real-world occurrences, as are the two covered in the paper, because
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the introduction of weighted distances account for properties inherent

in generators. These properties are akin to those of the boats described

in the boats/island analogies.

We can also apply weighted distances in the field of centroidal Voronoi

diagrams. Another possible future project is to use weighted CVT’s to

reassociate congressional districts. Instead of creating districts based

on many different subjects (including politics or geography), using pop-

ulation density to redistrict a state could result in a more balanced

system.
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