CRAN Package Check Results for Package sampleSelection

Last updated on 2024-12-26 01:50:09 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.2-12 14.07 295.97 310.04 ERROR
r-devel-linux-x86_64-debian-gcc 1.2-12 9.36 187.47 196.83 NOTE
r-devel-linux-x86_64-fedora-clang 1.2-12 552.51 NOTE
r-devel-linux-x86_64-fedora-gcc 1.2-12 504.11 NOTE
r-devel-windows-x86_64 1.2-12 14.00 327.00 341.00 NOTE
r-patched-linux-x86_64 1.2-12 12.56 292.36 304.92 NOTE
r-release-linux-x86_64 1.2-12 13.87 289.22 303.09 NOTE
r-release-macos-arm64 1.2-12 137.00 WARN
r-release-macos-x86_64 1.2-12 209.00 NOTE
r-release-windows-x86_64 1.2-12 15.00 317.00 332.00 NOTE
r-oldrel-macos-arm64 1.2-12 182.00 NOTE
r-oldrel-macos-x86_64 1.2-12 316.00 NOTE
r-oldrel-windows-x86_64 1.2-12 18.00 410.00 428.00 OK

Check Details

Version: 1.2-12
Check: Rd files
Result: NOTE checkRd: (-1) binaryChoice.Rd:105: Lost braces in \itemize; \value handles \item{}{} directly checkRd: (-1) binaryChoice.Rd:106: Lost braces in \itemize; \value handles \item{}{} directly checkRd: (-1) binaryChoice.Rd:111: Lost braces in \itemize; \value handles \item{}{} directly checkRd: (-1) binaryChoice.Rd:112: Lost braces in \itemize; \value handles \item{}{} directly checkRd: (-1) binaryChoice.Rd:113: Lost braces in \itemize; \value handles \item{}{} directly checkRd: (-1) binaryChoice.Rd:114: Lost braces in \itemize; \value handles \item{}{} directly Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

Version: 1.2-12
Check: examples
Result: ERROR Running examples in ‘sampleSelection-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: selection > ### Title: Heckman-style selection and treatment effect models > ### Aliases: selection heckit treatReg > ### Keywords: models regression > > ### ** Examples > > ## Greene( 2003 ): example 22.8, page 786 > data( Mroz87 ) > Mroz87$kids <- ( Mroz87$kids5 + Mroz87$kids618 > 0 ) > # Two-step estimation > summary( heckit( lfp ~ age + I( age^2 ) + faminc + kids + educ, + wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) ) -------------------------------------------- Tobit 2 model (sample selection model) 2-step Heckman / heckit estimation 753 observations (325 censored and 428 observed) 14 free parameters (df = 740) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.157e+00 1.402e+00 -2.965 0.003127 ** age 1.854e-01 6.597e-02 2.810 0.005078 ** I(age^2) -2.426e-03 7.735e-04 -3.136 0.001780 ** faminc 4.580e-06 4.206e-06 1.089 0.276544 kidsTRUE -4.490e-01 1.309e-01 -3.430 0.000638 *** educ 9.818e-02 2.298e-02 4.272 2.19e-05 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.9712003 2.0593505 -0.472 0.637 exper 0.0210610 0.0624646 0.337 0.736 I(exper^2) 0.0001371 0.0018782 0.073 0.942 educ 0.4170174 0.1002497 4.160 3.56e-05 *** city 0.4438379 0.3158984 1.405 0.160 Multiple R-Squared:0.1264, Adjusted R-Squared:0.116 Error terms: Estimate Std. Error t value Pr(>|t|) invMillsRatio -1.098 1.266 -0.867 0.386 sigma 3.200 NA NA NA rho -0.343 NA NA NA -------------------------------------------- > # ML estimation > summary( selection( lfp ~ age + I( age^2 ) + faminc + kids + educ, + wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) ) -------------------------------------------- Tobit 2 model (sample selection model) Maximum Likelihood estimation Newton-Raphson maximisation, 5 iterations Return code 8: successive function values within relative tolerance limit (reltol) Log-Likelihood: -1581.258 753 observations (325 censored and 428 observed) 13 free parameters (df = 740) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.120e+00 1.401e+00 -2.942 0.003368 ** age 1.840e-01 6.587e-02 2.794 0.005345 ** I(age^2) -2.409e-03 7.723e-04 -3.119 0.001886 ** faminc 5.680e-06 4.416e-06 1.286 0.198782 kidsTRUE -4.506e-01 1.302e-01 -3.461 0.000568 *** educ 9.528e-02 2.315e-02 4.115 4.3e-05 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -1.9630242 1.1982209 -1.638 0.102 exper 0.0278683 0.0615514 0.453 0.651 I(exper^2) -0.0001039 0.0018388 -0.056 0.955 educ 0.4570051 0.0732299 6.241 7.33e-10 *** city 0.4465290 0.3159209 1.413 0.158 Error terms: Estimate Std. Error t value Pr(>|t|) sigma 3.1084 0.1138 27.307 <2e-16 *** rho -0.1320 0.1651 -0.799 0.424 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > > ## Example using binary outcome for selection model. > ## We estimate the probability of womens' education on their > ## chances to get high wage (> $5/hr in 1975 USD), using PSID data > ## We use education as explanatory variable > ## and add age, kids, and non-work income as exclusion restrictions. > data(Mroz87) > m <- selection(lfp ~ educ + age + kids5 + kids618 + nwifeinc, + wage >= 5 ~ educ, data = Mroz87 ) > summary(m) -------------------------------------------- Tobit 2 model with binary outcome (sample selection model) Maximum Likelihood estimation BHHH maximisation, 8 iterations Return code 8: successive function values within relative tolerance limit (reltol) Log-Likelihood: -653.2037 753 observations (325 censored and 428 observed) 9 free parameters (df = 744) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.430362 0.475966 0.904 0.366 educ 0.156223 0.023811 6.561 1.00e-10 *** age -0.034713 0.007649 -4.538 6.61e-06 *** kids5 -0.890560 0.112663 -7.905 9.69e-15 *** kids618 -0.038167 0.039320 -0.971 0.332 nwifeinc -0.020948 0.004318 -4.851 1.49e-06 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.5213 0.5611 -8.058 3.08e-15 *** educ 0.2879 0.0369 7.800 2.09e-14 *** Error terms: Estimate Std. Error t value Pr(>|t|) rho 0.1164 0.2706 0.43 0.667 -------------------------------------------- > > > ## example using random numbers > library( "mvtnorm" ) > nObs <- 1000 > sigma <- matrix( c( 1, -0.7, -0.7, 1 ), ncol = 2 ) > errorTerms <- rmvnorm( nObs, c( 0, 0 ), sigma ) > myData <- data.frame( no = c( 1:nObs ), x1 = rnorm( nObs ), x2 = rnorm( nObs ), + u1 = errorTerms[ , 1 ], u2 = errorTerms[ , 2 ] ) > myData$y <- 2 + myData$x1 + myData$u1 > myData$s <- ( 2 * myData$x1 + myData$x2 + myData$u2 - 0.2 ) > 0 > myData$y[ !myData$s ] <- NA > myOls <- lm( y ~ x1, data = myData) > summary( myOls ) Call: lm(formula = y ~ x1, data = myData) Residuals: Min 1Q Median 3Q Max -3.1670 -0.6422 -0.0176 0.6851 3.1186 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.53676 0.06236 24.64 <2e-16 *** x1 1.26069 0.05891 21.40 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9922 on 472 degrees of freedom (526 observations deleted due to missingness) Multiple R-squared: 0.4925, Adjusted R-squared: 0.4914 F-statistic: 458 on 1 and 472 DF, p-value: < 2.2e-16 > myHeckit <- heckit( s ~ x1 + x2, y ~ x1, myData, print.level = 1 ) Tobit 2 model > summary( myHeckit ) -------------------------------------------- Tobit 2 model (sample selection model) 2-step Heckman / heckit estimation 1000 observations (526 censored and 474 observed) 8 free parameters (df = 993) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.22904 0.06106 -3.751 0.000186 *** x1 1.97384 0.12229 16.141 < 2e-16 *** x2 1.01003 0.07930 12.737 < 2e-16 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.12355 0.10883 19.51 <2e-16 *** x1 0.89186 0.08257 10.80 <2e-16 *** Multiple R-Squared:0.5404, Adjusted R-Squared:0.5385 Error terms: Estimate Std. Error t value Pr(>|t|) invMillsRatio -0.9622 0.1318 -7.298 5.99e-13 *** sigma 1.0750 NA NA NA rho -0.8950 NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > > ## example using random numbers with IV/2SLS estimation > library( "mvtnorm" ) > nObs <- 1000 > sigma <- matrix( c( 1, 0.5, 0.1, 0.5, 1, -0.3, 0.1, -0.3, 1 ), ncol = 3 ) > errorTerms <- rmvnorm( nObs, c( 0, 0, 0 ), sigma ) > myData <- data.frame( no = c( 1:nObs ), x1 = rnorm( nObs ), x2 = rnorm( nObs ), + u1 = errorTerms[ , 1 ], u2 = errorTerms[ , 2 ], u3 = errorTerms[ , 3 ] ) > myData$w <- 1 + myData$x1 + myData$u1 > myData$y <- 2 + myData$w + myData$u2 > myData$s <- ( 2 * myData$x1 + myData$x2 + myData$u3 - 0.2 ) > 0 > myData$y[ !myData$s ] <- NA > myHeckit <- heckit( s ~ x1 + x2, y ~ w, data = myData ) > summary( myHeckit ) # biased! -------------------------------------------- Tobit 2 model (sample selection model) 2-step Heckman / heckit estimation 1000 observations (527 censored and 473 observed) 8 free parameters (df = 993) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.15979 0.05860 -2.727 0.00651 ** x1 1.86891 0.11381 16.421 < 2e-16 *** x2 0.98799 0.07971 12.394 < 2e-16 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.08092 0.09163 11.80 <2e-16 *** w 1.45660 0.03713 39.23 <2e-16 *** Multiple R-Squared:0.7841, Adjusted R-Squared:0.7832 Error terms: Estimate Std. Error t value Pr(>|t|) invMillsRatio 0.1829 0.1013 1.806 0.0713 . sigma 0.9215 NA NA NA rho 0.1984 NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > myHeckitIv <- heckit( s ~ x1 + x2, y ~ w, data = myData, inst = ~ x1 ) > summary( myHeckitIv ) # unbiased -------------------------------------------- Tobit 2 model (sample selection model) 2-step Heckman / heckit estimation 1000 observations (527 censored and 473 observed) 8 free parameters (df = 993) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.15979 0.05860 -2.727 0.00651 ** x1 1.86891 0.11381 16.421 < 2e-16 *** x2 0.98799 0.07971 12.394 < 2e-16 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.0345 0.1067 19.07 <2e-16 *** w 0.9785 0.0432 22.65 <2e-16 *** Multiple R-Squared:0.7083, Adjusted R-Squared:0.707 Error terms: Estimate Std. Error t value Pr(>|t|) invMillsRatio -0.2891 0.1175 -2.46 0.0141 * sigma 1.0767 NA NA NA rho -0.2685 NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > > ## tobit-5 example > N <- 500 > library(mvtnorm) > vc <- diag(3) > vc[lower.tri(vc)] <- c(0.9, 0.5, 0.6) > vc[upper.tri(vc)] <- vc[lower.tri(vc)] > eps <- rmvnorm(N, rep(0, 3), vc) > xs <- runif(N) > ys <- xs + eps[,1] > 0 > xo1 <- runif(N) > yo1 <- xo1 + eps[,2] > xo2 <- runif(N) > yo2 <- xo2 + eps[,3] > a <- selection(ys~xs, list(yo1 ~ xo1, yo2 ~ xo2)) > summary(a) -------------------------------------------- Tobit 5 model (switching regression model) Maximum Likelihood estimation Newton-Raphson maximisation, 5 iterations Return code 1: gradient close to zero (gradtol) Log-Likelihood: -916.9684 500 observations: 157 selection 1 (FALSE) and 343 selection 2 (TRUE) 10 free parameters (df = 490) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.0534 0.1065 -0.501 0.616 xs 1.1250 0.1842 6.106 2.08e-09 *** Outcome equation 1: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.07615 0.18201 0.418 0.676 xo1 0.92591 0.17272 5.361 1.28e-07 *** Outcome equation 2: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.01079 0.17850 -0.060 0.952 xo2 1.09098 0.17267 6.318 5.95e-10 *** Error terms: Estimate Std. Error t value Pr(>|t|) sigma1 0.97959 0.10528 9.305 <2e-16 *** sigma2 0.97087 0.06317 15.370 <2e-16 *** rho1 0.88349 0.05759 15.341 <2e-16 *** rho2 0.34270 0.30009 1.142 0.254 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > > ## tobit2 example > vc <- diag(2) > vc[2,1] <- vc[1,2] <- -0.7 > eps <- rmvnorm(N, rep(0, 2), vc) > xs <- runif(N) > ys <- xs + eps[,1] > 0 > xo <- runif(N) > yo <- (xo + eps[,2])*(ys > 0) > a <- selection(ys~xs, yo ~xo) > summary(a) -------------------------------------------- Tobit 2 model (sample selection model) Maximum Likelihood estimation Newton-Raphson maximisation, 3 iterations Return code 8: successive function values within relative tolerance limit (reltol) Log-Likelihood: -725.3648 500 observations (160 censored and 340 observed) 6 free parameters (df = 494) Probit selection equation: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.1222 0.1095 1.115 0.265198 xs 0.7149 0.1955 3.657 0.000283 *** Outcome equation: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.01516 0.15424 -0.098 0.922 xo 0.87447 0.15769 5.545 4.78e-08 *** Error terms: Estimate Std. Error t value Pr(>|t|) sigma 0.91843 0.08754 10.492 < 2e-16 *** rho -0.60686 0.22383 -2.711 0.00694 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -------------------------------------------- > > ## Example for treatment regressions > ## Estimate the effect of treatment on income > ## selection outcome: treatment participation, logical (treatment) > ## selection explanatory variables: age, education (years) > ## unemployment in 1974, 1975, race > ## outcome: log real income 1978 > ## outcome explanatory variables: treatment, age, education, race. > ## unemployment variables are treated as exclusion restriction > data(Treatment, package="Ecdat") Error in find.package(package, lib.loc, verbose = verbose) : there is no package called ‘Ecdat’ Calls: data -> find.package Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.2-12
Check: tests
Result: NOTE Running ‘Mroz87SelectionTest.R’ [5s/6s] Comparing ‘Mroz87SelectionTest.Rout’ to ‘Mroz87SelectionTest.Rout.save’ ... OK Running ‘binarySelectionOutcome.R’ [14s/18s] Comparing ‘binarySelectionOutcome.Rout’ to ‘binarySelectionOutcome.Rout.save’ ... OK Running ‘fail.R’ [2s/3s] Comparing ‘fail.Rout’ to ‘fail.Rout.save’ ... OK Running ‘heckitIvTest.R’ [3s/3s] Comparing ‘heckitIvTest.Rout’ to ‘heckitIvTest.Rout.save’ ... OK Running ‘intervalTest.R’ [17s/19s] Comparing ‘intervalTest.Rout’ to ‘intervalTest.Rout.save’ ... OK Running ‘invMillsRatioTest.R’ [20s/25s] Comparing ‘invMillsRatioTest.Rout’ to ‘invMillsRatioTest.Rout.save’ ...60a61 > Running ‘probit.R’ [4s/5s] Comparing ‘probit.Rout’ to ‘probit.Rout.save’ ... OK Running ‘selection.R’ [14s/18s] Comparing ‘selection.Rout’ to ‘selection.Rout.save’ ... OK Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.2-12
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘intReg.Rnw’ using Sweave Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric --- finished re-building ‘intReg.Rnw’ --- re-building ‘selection.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced --- finished re-building ‘selection.Rnw’ --- re-building ‘treatReg.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Error: processing vignette 'treatReg.Rnw' failed with diagnostics: chunk 5 (label = EcdatExample) Error in find.package(package, lib.loc, verbose = verbose) : there is no package called ‘Ecdat’ --- failed re-building ‘treatReg.Rnw’ SUMMARY: processing the following file failed: ‘treatReg.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.2-12
Check: tests
Result: NOTE Running ‘Mroz87SelectionTest.R’ [3s/4s] Comparing ‘Mroz87SelectionTest.Rout’ to ‘Mroz87SelectionTest.Rout.save’ ... OK Running ‘binarySelectionOutcome.R’ [8s/10s] Comparing ‘binarySelectionOutcome.Rout’ to ‘binarySelectionOutcome.Rout.save’ ... OK Running ‘fail.R’ [2s/2s] Comparing ‘fail.Rout’ to ‘fail.Rout.save’ ... OK Running ‘heckitIvTest.R’ [2s/3s] Comparing ‘heckitIvTest.Rout’ to ‘heckitIvTest.Rout.save’ ... OK Running ‘intervalTest.R’ [10s/13s] Comparing ‘intervalTest.Rout’ to ‘intervalTest.Rout.save’ ... OK Running ‘invMillsRatioTest.R’ [12s/16s] Comparing ‘invMillsRatioTest.Rout’ to ‘invMillsRatioTest.Rout.save’ ...60a61 > Running ‘probit.R’ [3s/3s] Comparing ‘probit.Rout’ to ‘probit.Rout.save’ ... OK Running ‘selection.R’ [10s/12s] Comparing ‘selection.Rout’ to ‘selection.Rout.save’ ... OK Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.2-12
Check: tests
Result: NOTE Running ‘Mroz87SelectionTest.R’ [8s/22s] Comparing ‘Mroz87SelectionTest.Rout’ to ‘Mroz87SelectionTest.Rout.save’ ... OK Running ‘binarySelectionOutcome.R’ [25s/66s] Comparing ‘binarySelectionOutcome.Rout’ to ‘binarySelectionOutcome.Rout.save’ ... OK Running ‘fail.R’ [4s/14s] Comparing ‘fail.Rout’ to ‘fail.Rout.save’ ... OK Running ‘heckitIvTest.R’ [4s/11s] Comparing ‘heckitIvTest.Rout’ to ‘heckitIvTest.Rout.save’ ... OK Running ‘intervalTest.R’ [32s/82s] Comparing ‘intervalTest.Rout’ to ‘intervalTest.Rout.save’ ... OK Running ‘invMillsRatioTest.R’ [38s/141s] Comparing ‘invMillsRatioTest.Rout’ to ‘invMillsRatioTest.Rout.save’ ...60a61 > Running ‘probit.R’ [6s/26s] Comparing ‘probit.Rout’ to ‘probit.Rout.save’ ... OK Running ‘selection.R’ [27s/98s] Comparing ‘selection.Rout’ to ‘selection.Rout.save’ ... OK Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.2-12
Check: tests
Result: NOTE Running ‘Mroz87SelectionTest.R’ [9s/11s] Comparing ‘Mroz87SelectionTest.Rout’ to ‘Mroz87SelectionTest.Rout.save’ ... OK Running ‘binarySelectionOutcome.R’ [22s/27s] Comparing ‘binarySelectionOutcome.Rout’ to ‘binarySelectionOutcome.Rout.save’ ... OK Running ‘fail.R’ Comparing ‘fail.Rout’ to ‘fail.Rout.save’ ... OK Running ‘heckitIvTest.R’ Comparing ‘heckitIvTest.Rout’ to ‘heckitIvTest.Rout.save’ ... OK Running ‘intervalTest.R’ [27s/33s] Comparing ‘intervalTest.Rout’ to ‘intervalTest.Rout.save’ ... OK Running ‘invMillsRatioTest.R’ [32s/37s] Comparing ‘invMillsRatioTest.Rout’ to ‘invMillsRatioTest.Rout.save’ ...60a61 > Running ‘probit.R’ Comparing ‘probit.Rout’ to ‘probit.Rout.save’ ... OK Running ‘selection.R’ [26s/31s] Comparing ‘selection.Rout’ to ‘selection.Rout.save’ ... OK Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.2-12
Check: tests
Result: NOTE Running 'Mroz87SelectionTest.R' [4s] Comparing 'Mroz87SelectionTest.Rout' to 'Mroz87SelectionTest.Rout.save' ... OK Running 'binarySelectionOutcome.R' [11s] Comparing 'binarySelectionOutcome.Rout' to 'binarySelectionOutcome.Rout.save' ... OK Running 'fail.R' [2s] Comparing 'fail.Rout' to 'fail.Rout.save' ... OK Running 'heckitIvTest.R' [2s] Comparing 'heckitIvTest.Rout' to 'heckitIvTest.Rout.save' ... OK Running 'intervalTest.R' [13s] Comparing 'intervalTest.Rout' to 'intervalTest.Rout.save' ... OK Running 'invMillsRatioTest.R' [16s] Comparing 'invMillsRatioTest.Rout' to 'invMillsRatioTest.Rout.save' ...60a61 > Running 'probit.R' [4s] Comparing 'probit.Rout' to 'probit.Rout.save' ... OK Running 'selection.R' [15s] Comparing 'selection.Rout' to 'selection.Rout.save' ... OK Flavor: r-devel-windows-x86_64

Version: 1.2-12
Check: re-building of vignette outputs
Result: WARN Error(s) in re-building vignettes: --- re-building ‘intReg.Rnw’ using Sweave Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric --- finished re-building ‘intReg.Rnw’ --- re-building ‘selection.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced --- finished re-building ‘selection.Rnw’ --- re-building ‘treatReg.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Error: processing vignette 'treatReg.Rnw' failed with diagnostics: Running 'texi2dvi' on 'treatReg.tex' failed. LaTeX errors: !pdfTeX error: pdflatex (file bbm10): Font bbm10 at 600 not found ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘treatReg.Rnw’ SUMMARY: processing the following file failed: ‘treatReg.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-release-macos-arm64

Version: 1.2-12
Check: re-building of vignette outputs
Result: NOTE Error(s) in re-building vignettes: --- re-building ‘intReg.Rnw’ using Sweave Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric --- finished re-building ‘intReg.Rnw’ --- re-building ‘selection.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced --- finished re-building ‘selection.Rnw’ --- re-building ‘treatReg.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Error: processing vignette 'treatReg.Rnw' failed with diagnostics: Running 'texi2dvi' on 'treatReg.tex' failed. LaTeX errors: !pdfTeX error: pdflatex (file bbm10): Font bbm10 at 600 not found ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘treatReg.Rnw’ SUMMARY: processing the following file failed: ‘treatReg.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-oldrel-macos-arm64

Version: 1.2-12
Check: re-building of vignette outputs
Result: NOTE Error(s) in re-building vignettes: --- re-building ‘intReg.Rnw’ using Sweave Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric --- finished re-building ‘intReg.Rnw’ --- re-building ‘selection.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vc)) : NaNs produced Warning in sqrt(diag(vcov(object, part = "full"))) : NaNs produced --- finished re-building ‘selection.Rnw’ --- re-building ‘treatReg.Rnw’ using Sweave Loading required package: maxLik Loading required package: miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Error: processing vignette 'treatReg.Rnw' failed with diagnostics: Running 'texi2dvi' on 'treatReg.tex' failed. LaTeX errors: ! LaTeX Error: File `icomma.sty' not found. Type X to quit or <RETURN> to proceed, or enter new name. (Default extension: sty) ! Emergency stop. <read *> l.19 \usepackage {natbib}^^M ! ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘treatReg.Rnw’ SUMMARY: processing the following file failed: ‘treatReg.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-oldrel-macos-x86_64