In this vignette we will explore the functionality and arguments of
summariseSequenceRatios()
function, which is used to
generate the sequence ratios of the SSA. As this function uses the
output of generateSequenceCohortSet()
function (explained
in detail in the vignette: Step 1. Generate a sequence
cohort), we will pick up the explanation from where we left off
in the previous vignette.
Recall that in the previous vignette: Step 1. Generate a sequence
cohort, we’ve generated cdm$aspirin
and
cdm$acetaminophen
before and using them we could generate
cdm$intersect
like so:
One can obtain the crude and adjusted sequence ratios (with its
corresponding confidence intervals) using
summariseSequenceRatios()
function:
summariseSequenceRatios(
cohort = cdm$intersect
) |>
dplyr::glimpse()
#> Rows: 10
#> Columns: 13
#> $ result_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
#> $ cdm_name <chr> "Synthea synthetic health database", "Synthea synthet…
#> $ group_name <chr> "index_cohort_name &&& marker_cohort_name", "index_co…
#> $ group_level <chr> "1191_aspirin &&& 161_acetaminophen", "1191_aspirin &…
#> $ strata_name <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ strata_level <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ variable_name <chr> "crude", "adjusted", "crude", "crude", "adjusted", "a…
#> $ variable_level <chr> "sequence_ratio", "sequence_ratio", "sequence_ratio",…
#> $ estimate_name <chr> "point_estimate", "point_estimate", "lower_CI", "uppe…
#> $ estimate_type <chr> "numeric", "numeric", "numeric", "numeric", "numeric"…
#> $ estimate_value <chr> "1.8108504398827", "186.99811917665", "1.649709638170…
#> $ additional_name <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ additional_level <chr> "overall", "overall", "overall", "overall", "overall"…
The obtained output has a summarised result format. In the later vignette (Step 3. Visualise results) we will explore how to visualise the results in a more intuitive way.