GWlasso: Geographically Weighted Lasso
Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions.
These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
| Version: |
1.0.2 |
| Depends: |
R (≥ 3.5.0) |
| Imports: |
dplyr, ggplot2, ggside, glmnet, GWmodel, lifecycle, magrittr, methods, progress, rlang, sf, tidyr |
| Suggests: |
knitr, maps, rmarkdown |
| Published: |
2025-09-26 |
| DOI: |
10.32614/CRAN.package.GWlasso |
| Author: |
Matthieu Mulot
[aut, cre, cph],
Sophie Erb [aut] |
| Maintainer: |
Matthieu Mulot <matthieu.mulot at gmail.com> |
| BugReports: |
https://github.com/nibortolum/GWlasso/issues |
| License: |
MIT + file LICENSE |
| URL: |
https://github.com/nibortolum/GWlasso,
https://nibortolum.github.io/GWlasso/ |
| NeedsCompilation: |
no |
| Citation: |
GWlasso citation info |
| Materials: |
README, NEWS |
| CRAN checks: |
GWlasso results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GWlasso
to link to this page.