The minTriadicClosure()
function defines a smoothed
triadic closure statistic for use in LOLOG models. It counts how many
nodes are part of at least k
closed triangles, using a
sigmoid function for smoothing.
This statistic can be added to LOLOG model formulas. Below is an example using a small toy network.
# Load required libraries
library(MinTriadic)
library(lolog)
library(network)
# Register the triadic change statistic
registerMinTriadicClosure()
# Load the Lazega collaboration network
data(lazega, package = "lolog")
# Fit LOLOG model with edges and minTriadicClosure
model <- lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), verbose = FALSE)
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## observed_statistics theta se pvalue
## edges 115 2.929975 0.7146951 0
## minTriadicClosure 28 70.941143 5.4321625 0