ProfileGLMM: Bayesian Profile Regression using Generalised Linear Mixed
Models
Implements a Bayesian profile regression using a generalized linear mixed model as output model. The package allows for binary (probit mixed model) and continuous (linear mixed model) outcomes and both continuous and categorical clustering variables. The package utilizes 'RcppArmadillo' and 'RcppDist' for high-performance statistical computing in C++. For more details see Amestoy & al. (2025) <doi:10.48550/arXiv.2510.08304>.
| Version: |
1.0.2 |
| Depends: |
R (≥ 3.5) |
| Imports: |
Rcpp, LaplacesDemon, MCMCpack, Matrix, Spectrum, mvtnorm |
| LinkingTo: |
Rcpp, RcppArmadillo, RcppDist |
| Published: |
2025-12-18 |
| DOI: |
10.32614/CRAN.package.ProfileGLMM (may not be active yet) |
| Author: |
Matteo Amestoy [aut, cre, cph],
Mark van de Wiel [ths],
Wessel van Wieringen [ths] |
| Maintainer: |
Matteo Amestoy <m.amestoy at amsterdamumc.nl> |
| BugReports: |
https://github.com/MatteoAmestoy/ProfileGLMM-package/issues |
| License: |
GPL-2 |
| URL: |
https://github.com/MatteoAmestoy/ProfileGLMM-package |
| NeedsCompilation: |
yes |
| Materials: |
README, NEWS |
| CRAN checks: |
ProfileGLMM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ProfileGLMM
to link to this page.