
clusterMI: Cluster Analysis with Missing Values by Multiple
Imputation

Contents
1 Wine data set 2

1.1 Full data set . 2
1.2 Adding missing values . 2

2 Multiple imputation 3
2.1 Joint modelling imputation . 3
2.2 Fully conditional specification . 5

3 Analysis and pooling 12
3.1 K means clustering and other implemented methods . 12
3.2 Custom clustering methods . 13

4 Diagnostics 14
4.1 Imputation model . 14
4.2 Number of imputed data sets (m) . 15
4.3 Number of clusters . 16

5 Cluster description 17

References 20

clusterMI is an R package to perform clustering with missing values. Missing values are addressed by multiple
imputation. The package offers various multiple imputation methods dedicated to clustered individuals
(Audigier, Niang, and Resche-Rigon (2021)). In addition, it allows pooling results both in terms of partition
and instability (Audigier and Niang (2022)). Among applications, these functionalities can be used to choose
a number of clusters with missing values.

Contents

1

library(clusterMI)

1 Wine data set
The wine data set (Asuncion and Newman (2007)) is the result of a chemical analysis of 177 Italian wine
samples from three different cultivars. Each wine is described by 13 continuous variables. This data set will
be used to illustrate the clusterMI package. For achieving this goal, missing values will be added, and the
cultivar variable will be omitted.

1.1 Full data set

require(stargazer)
set.seed(123456)
data(wine)
stargazer(wine, type = "text")
#>
#> ==
#> Statistic N Mean St. Dev. Min Max
#> --
#> cult 178 1.900 0.780 1 3
#> alco 178 13.000 0.810 11.000 15.000
#> malic 178 2.300 1.100 0.740 5.800
#> ash 178 2.400 0.270 1.400 3.200
#> alca 178 19.000 3.300 11.000 30.000
#> mg 178 100.000 14.000 70 162
#> phe 178 2.300 0.630 0.980 3.900
#> fla 178 2.000 1.000 0.340 5.100
#> nfla 178 0.360 0.120 0.130 0.660
#> pro 178 1.600 0.570 0.410 3.600
#> col 178 5.100 2.300 1.300 13.000
#> hue 178 0.960 0.230 0.480 1.700
#> ratio 178 2.600 0.710 1.300 4.000
#> prol 178 747.000 315.000 278 1,680
#> --
table(wine$cult)
#>
#> 1 2 3
#> 59 71 48

1.2 Adding missing values
Missing values are artificially added according to a missing completely at random mechanism so that each
value of the data set is missing with a probability of 1/3 (independently to the values themselves).
ref <- wine$cult # "True" partition
nb.clust <- 3 # Number of clusters
wine.na <- wine
wine.na$cult <- NULL # Remove the reference partition
wine.na <- prodna(wine.na, pct = 1/3)

proportion of missing values
colMeans(is.na(wine.na))
#> alco malic ash alca mg phe fla nfla pro col hue ratio prol

2

#> 0.34 0.43 0.32 0.37 0.30 0.32 0.28 0.35 0.27 0.33 0.36 0.33 0.34

proportion of incomplete individuals
mean(apply(is.na(wine.na), 1, any))
#> [1] 0.99

2 Multiple imputation
The clusterMI package offers various multiple imputation methods dedicated to clustered individuals. They
can be divided into two categories: joint modelling (JM) imputation and fully conditional specification (FCS).
The first assumes a joint distribution for all variables and imputation is performed using this model. The
second proceeds variable per variable in a sequential manner by regression. FCS methods are more time
consuming, but also more flexible, allowing a better fit of the imputation model. Multiple imputation is
performed with the imputedata function. We start by presenting JM approaches in Section (2.1), while FCS
approaches will be presented in Section (2.2).

2.1 Joint modelling imputation
The package proposes two JM methods: JM-GL and JM-DP. Both are based on a multivariate gaussian
mixture model.

• JM-GL is implemented in the mix package (Joseph L. Schafer. (2022)). Initially, this method is dedicated
to the imputation of mixed data, but it can be used by considering the partition variable as fully
incomplete categorical variable. The method assumes constant variance in each cluster (for continuous
data).

• JM-DP is a joint modelling method implemented in the R packages DPImputeCont (Kim (2020)),
NPBayesImputeCat (Wang et al. (2022)), MixedDataImpute (Murray and Reiter (2015)) for continuous,
categorical or mixed data respectively. Such a method has the advantage to automatically determine a
number of clusters (but this number needs to by bounded by nb.clust). Furthermore, it allows various
covariance matrices according to the clusters (for continuous data).

JM-GL is the default imputation method used in imputedata. To perform multiple imputation with this
default method, we proceed as follows:
m <- 20 # Number of imputed data sets
res.imp.JM <- imputedata(data.na = wine.na,

nb.clust = nb.clust,
m = m)

and we specify method = "JM-DP" for imputation using the other JM method:
res.imp <- imputedata(data.na = wine.na,

method = "JM-DP",
nb.clust = nb.clust,
m = m)

Convergence

Both imputation methods consist in a data-augmentation algorithm alternating data imputation and drawing
from a posterior distribution. The m imputed datasets are obtained by keeping one imputed dataset every L
iterations. The first Lstart iterations consists in a burn-in period, which is required to reach convergence
to the posterior distribution (expected from incomplete data). The L iterations between successive draws
guarantee an independance between imputed values.

Lstart and L can be checked by graphical investigations. For achieving this goal, we track the between inertia
for each variable over successive iterations of the data-augmentation algorithm (available in the res.conv

3

output from the imputedata function). In practice, we run imputation for a large number of imputed datasets
m by keeping all intermediate imputed datatsets, i.e. at each iteration (L = 1) from the first (Lstart = 1):
res.imp.JM.conv <- imputedata(data.na = wine.na,

method = "JM-GL",
nb.clust = nb.clust,
m = 800,
Lstart = 1, # number of iterations for the burn-in period
L = 1 # number of iterations between each draw
)

and then plot the successive between inertia values for the six first variables (as an example):
res.conv <- res.imp.JM.conv$res.conv
res.conv.ts <- ts(t(res.conv)) # conversion as time-series object
plot(res.conv.ts[, 1:6]) # diagnostic from the 6 first variables

0.
15

0.
30

0.
45

al
co

0.
2

0.
3

0.
4

0.
5

m
al

ic

0.
00

0
0.

01
0

0 200 400 600 800

as
h

L

1.
0

2.
0

3.
0

4.
0

al
ca

20
40

60
80

m
g

0.
20

0.
24

0.
28

0 200 400 600 800

ph
e

L

Here, convergence seems to be reached at 400 iterations, meaning Lstart = 400 is a suitable choice.

Next, the number of iterations between successive draws can be checked by visualising the autocorrelograms.
Here, an autocorrelogram represents the correlation between the vector of the successive between inertia and
its shifted version for several lags. We seek to find a lag L sufficiently large to avoid correlation between the
vectors of between inertia. Such graphics can be obtained as follows:
Lstart <- 400
extraction of summaries after Lstart iterations for the 6 first variables
res.conv.ts <- res.conv.ts[Lstart:nrow(res.conv.ts), 1:6]
apply(res.conv.ts, 2, acf)

4

0 5 10 15 20 25

0.
0

0.
4

0.
8

L

A
C

F

alco

0 5 10 15 20 25

0.
0

0.
4

0.
8

L
A

C
F

malic

0 5 10 15 20 25

0.
0

0.
4

0.
8

L

A
C

F

ash

0 5 10 15 20 25

0.
0

0.
4

0.
8

L

A
C

F

alca

0 5 10 15 20 25

0.
0

0.
4

0.
8

L

A
C

F

mg

0 5 10 15 20 25

0.
0

0.
4

0.
8

L
A

C
F

phe

Following such graphics L = 20 (the default value) seems sufficient. Thus, the imputation step can be rerun
as follows:
Lstart <- 400
L <- 20
res.imp.JM <- imputedata(data.na = wine.na,

nb.clust = nb.clust,
Lstart = Lstart,
L = L,
m = m)

Note that the imputation also requires a pre-specified number of clusters (nb.clust). Here it is tuned to 3
(corresponding to the number of varieties). We explain in Section 4.3 how it can be tuned. Furthermore, the
number of imputed data sets is tuned to m = 20 which is generally enough (this choice will be discussed in
Section 4.2).

2.2 Fully conditional specification
Fully conditional specification methods consist in a variable per variable imputation. The two fully conditional
imputation methods proposed are FCS-homo and FCS-hetero (Audigier, Niang, and Resche-Rigon (2021)).
They essentially differ by the assumption about the covariance in each cluster (constant or not respectively).

To perform multiple imputation, we proceed as follows:
maxit <- 20 # Number of iterations for FCS imputation, should be larger in practice
res.imp.FCS <- imputedata(data.na = wine.na,

method = "FCS-homo",
nb.clust = nb.clust,
maxit = maxit,
m = m)

5

With FCS methods, the imputedata function alternates cluster analysis and imputation given the partition of
individuals. When the cluster analysis is performed, the imputedata function calls the mice function from the
mice R package (van Buuren and Groothuis-Oudshoorn (2011)). The mice package proposes various methods
for imputation. By default, imputedata uses the default method used in mice (predictive mean matching
for continuous data), but others can be specified by tuning the method.mice argument. For instance, for
imputation under the normal model, use
imputedata(data.na = wine.na,

method = "FCS-homo",
nb.clust = nb.clust,
maxit = maxit,
m = m,
method.mice = "norm")

FCS-hetero allows imputation of continuous variables according to linear mixed models (various methods are
available in the micemd R package Audigier and Resche-Rigon (2023)). Furthermore, contrary to FCS-homo,
FCS-hetero updates the partition without assuming constant variance in each cluster.

2.2.1 Convergence

FCS imputation consists in imputing each variable sequentially several times. Many iterations can be required
(maxit argument). For checking convergence, the within and between inertia of each imputed variable can be
plotted at each iteration, as proposed by the choosemaxit function
choosemaxit(res.imp.FCS)

6

between within

alco
m

alic
ash

alca
m

g

5 10 15 20 5 10 15 20

0.25

0.30

0.35

0.40

0.5

1.0

0.000

0.025

0.050

0.075

2.5

5.0

7.5

10.0

50

100

150

iterations

va
r

m

1

2

3

4

5

Within and between variance plots
page 1 of 3

7

between within

phe
fla

nfla
pro

col

5 10 15 20 5 10 15 20

0.15

0.18

0.21

0.24

0.27

0.2

0.4

0.6

0.8

0.0050

0.0075

0.0100

0.05

0.10

0.15

0.20

0.25

2.1

2.4

2.7

3.0

iterations

va
r

m

1

2

3

4

5

Within and between variance plots
page 2 of 3

8

between within

hue
ratio

prol

5 10 15 20 5 10 15 20

0.020

0.025

0.030

0.035

0.2

0.3

0.4

30000

40000

50000

60000

70000

80000

iterations

va
r

m

1

2

3

4

5

Within and between variance plots
page 3 of 3

Note that by default, only the five first imputed data sets are plotted (corresponding to the number of curves
plotted for each variable). The plotm argument can be tuned to modify which curves should be drawn.

In this case, the number of iterations could be potentially increased. For achieving this goal, the imputation
should be rerun by increasing the maxit argument as follows:
res.imp <- imputedata(data.na = wine.na,

method = "FCS-homo",
nb.clust = nb.clust,
maxit = 100,
m = m)

choosemaxit(res.imp)

For computational reasons, convergence diagnostic can be achieved by decreasing the number of imputed
datasets m. When the number of iterations maxit will be chosen, then multiple imputation with a larger

9

value for m could be considered.

2.2.2 Specifying imputation models

Fully conditional imputation methods are quickly limited when the number of variables is large since
imputation models become overfit. To address this issue, we can use penalised regression as proposed in
mice by specifying method.mice = lasso.norm for instance. Another way consists in specifying conditional
imputation models by tuning the predictmat argument. This argument is a binary matrix where each row
indicates which explanatory variables (in column) should be used for imputation.

2.2.2.1 The varselbest procedure To tune this matrix in an automatic way, the varselbest function
proposes to perform variable selection following Bar-Hen and Audigier (2022). Briefly, varselbest performs
variable selection on random subsets of variables and then, combines them to recover which explanatory
variables are related to the response. More precisely, the outlines of the algorithm are as follows: let consider
a random subset of sizeblock among p variables. Then, any selection variable scheme can be applied (lasso,
stepwise and knockoff are proposed by tuning the method.select argument). By resampling (B times) a
sample of size sizeblock among the p variables, we may count how many times a variable is considered as
significantly related to the response and how many times it is not. We need to define a threshold (r) to
conclude if a given variable is significantly related to the response (by default, r = 0.3). The main advantage
of this function is that it handles both missing values and high-dimensional data.

By default, the varselbest function performs variable selection by knockoff (Barber and Candès (2015))
based on B = 200 bootstrap subsets. The threshold r is tuned at 0.3 allowing to omit only variables very
poorly predictive. The choices of B and r are discussed in next sections.

Since the method is time consuming, the function allows parallel computing by tuning the nnodes argument.
In the next example, the imputation model for the variable alco is obtained using the algorithm previously
described.
nnodes <- 2
Number of CPU cores used for parallel computation.
Use parallel::detectCores() to choose an appropriate number

variable selection to impute the "alco" variable
B <- 50 # number of bootstrap subsets, should be increased in practice
res.varsel <- varselbest(res.imputedata = res.imp.FCS, B = B, listvar = "alco",

nnodes = nnodes, graph = FALSE)

res.varsel$predictormatrix["alco",]

#> alco malic ash alca mg phe fla nfla pro col hue ratio prol
#> 0 0 1 1 1 0 1 0 1 1 1 1 1

The function suggests considering the variables ash, alca, mg, fla, pro, col, hue, ratio, prol to impute the
alco variable. Then, imputation can be rerun by specifying the predictmat argument returned by the
varselbest function
multiple imputation with the new model
res.imp.select <- imputedata(data.na = wine.na,

method = "FCS-homo",
nb.clust = nb.clust,
maxit = maxit,
m = m,
predictmat = res.varsel$predictormatrix)

Note that for specifying all conditional imputation models you should use

10

varselbest(res.imputedata = res.imp.FCS, B = B, nnodes = nnodes) # (time consuming)

2.2.2.2 Convergence The number of iterations B should be large so that the proportion of times a
variable is selected becomes stable. The chooseB function plots the proportion according to the number of
iterations.
res.B <- chooseB(res.varsel)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
B

P
ro

po
rt

io
n

variable

malic

ash

alca

mg

phe

fla

nfla

pro

col

hue

ratio

prol

B=50 iterations seems not enough.

2.2.2.3 Tuning the threshold r To tune the threshold r, the vector of proportions can be graphically
investigated.
check the variable importance
round(res.varsel$proportion["alco",], 2)
#> alco malic ash alca mg phe fla nfla pro col hue ratio prol
#> 0.00 0.26 0.36 0.45 0.33 0.10 0.33 0.14 0.45 0.95 0.71 0.60 0.36
barplot(sort(res.varsel$proportion["alco",], decreasing=TRUE),

ylab = "proportion",
main = "alco",
ylim = c(0, 1),
las = 2,
cex.names = .5)

r <- 0.2 # a new threshold value (r = 0.3 by default)
abline(h = r, col = 2, lty = 2)

11

co
l

hu
e

ra
tio

al
ca pr
o

as
h

pr
ol

m
g fla

m
al

ic

nf
la

ph
e

al
co

alco

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Then, the predictor matrix can be easily updated at hand as follows
predictormatrix <- res.varsel$predictormatrix
predictormatrix[res.varsel$proportion>r] <- 1
predictormatrix[res.varsel$proportion<=r] <- 0
predictormatrix["alco",]
#> alco malic ash alca mg phe fla nfla pro col hue ratio prol
#> 0 1 1 1 1 0 1 0 1 1 1 1 1

By decreasing the threshold, more variables are used in the imputation model.

A more automatic way to tune r consists in using the function chooser. chooser computes an optimal
threshold using K-fold cross-validation. The call to chooser is highly time consuming, but the optimal value
of r can be follows during the process through graphical outputs. By this way, the user can stop the process
early. This can be achieved as follows:
chooser(res.varsel = res.varsel)

3 Analysis and pooling
After multiple imputation, cluster analysis and partition pooling can be done through the clusterMI function
(Audigier and Niang (2022)). Next, kmeans clustering is applied on the imputed data sets as an example.

3.1 K means clustering and other implemented methods
kmeans is the clustering method used by default.
kmeans clustering
res.pool.kmeans <- clusterMI(res.imp.JM, nnodes = nnodes)

The clusterMI function returns a consensus partition (part object) as well as a instability measure

12

(instability object). The instability object gathers the instability of each contributory partition (U),
their average (Ubar), the between instability (B) and the total instability (T).
part <- res.pool.kmeans$part
table(part) #compute cluster sizes
#> part
#> 1 2 3
#> 53 63 62
table(part, ref) #compare the partition with the reference partition
#> ref
#> part 1 2 3
#> 1 0 5 48
#> 2 2 61 0
#> 3 57 5 0
res.pool.kmeans$instability # look at instabilitiy measures
#> $U
#> [1] 0.0181 0.0095 0.0225 0.0182 0.0255 0.0191 0.0332 0.0271 0.0182 0.0194
#> [11] 0.0241 0.0170 0.0383 0.0180 0.0179 0.0230 0.0349 0.0310 0.0191 0.0280
#>
#> $Ubar
#> [1] 0.023
#>
#> $B
#> [1] 0.072
#>
#> $Tot
#> [1] 0.095

Among other clustering methods, clusterMI allows cluster analysis by k-medoids (method.clustering
= "pam"), clustering large applications (method.clustering = "clara"), hierarchical clustering
(method.clustering = "hclust"), fuzzy c-means (method.clustering = "cmeans"), or model-based
method (method.clustering = "mixture")
res.pool.all <- lapply(c("kmeans", "pam", "clara","hclust", "mixture", "cmeans"),

FUN = clusterMI,
nnodes = nnodes,
output = res.imp.JM)

3.2 Custom clustering methods
The user can also use custom clustering methods. For instance, to use reduced k-means, as implemented in
the R package clustrd, analysis and pooling can be achieved as follows:
library(clustrd)
res.ana.rkm <- lapply(res.imp.JM$res.imp,

FUN = cluspca,
nclus = nb.clust,
ndim = 2,
method= "RKM")

extract the set of partitions (as list)
res.ana.rkm <- lapply(res.ana.rkm, "[[", "cluster")

pooling by NMF
res.pool.rkm <- fastnmf(res.ana.rkm, nb.clust = nb.clust)
part.rkm <- res.pool.rkm$best$clust# extract the best solution based on several initialisations

13

Note that in this case, the instability is not computed.

4 Diagnostics
4.1 Imputation model
To check if the imputation model correctly fit the data, a classical way is to perform overimputation (Blackwell,
Honaker, and King (2015)), as proposed by the overimpute function. Overimputation consists in imputing
observed values several times (100 or more) and to compare the observed values with their imputed values.

Overimputation is a time-consuming process. To limit the time required for achieving overimputation the
user can:

• use parallel computing by specifying the nnodes argument
• perform imputation for a subset of individuals by tuning the plotinds argument
• perform imputation for a subset of variables by tuning the plotvars argument

In the next example, we use parallel computing and perform overimputation on the first variable (alco) for
20 individuals (at random) only.
Multiple imputation is rerun with more imputed data sets (m = 100)
res.imp.over <- imputedata(data.na = wine.na,

nb.clust = nb.clust,
m = 100,
Lstart = Lstart,
L = L,
verbose = FALSE)

selection of 20 complete individuals on variable "alco"
plotinds <- sample(which(!is.na(wine.na[, "alco"])),

size = 20)

res.over <- overimpute(res.imp.over,
nnodes = nnodes,
plotvars = "alco",
plotinds = plotinds)

14

12.0 12.5 13.0 13.5 14.0

11
12

13
14

alco (cov = 25 %)

observed values

im
pu

te
d

va
lu

es

0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1

The graphic represents the observed values (x-axis) versus the 90% prediction interval (y-axis) for these
values. Various colours are used according to the proportion of observed value used to build the interval
(which depends on the missing data pattern on each individual). If the conditional model fits the data well,
then 90% of intervals cutting the first bisector (indicating the observed values are gathered in the interval)
are expected.

Here, the imputation model for the alco variable does not fit the observed data very well since the coverage
is 25%. The fit could be improved by investigating FCS imputation methods.

4.2 Number of imputed data sets (m)
The number of imputed data sets (m) should be sufficiently large to improve the partition accuracy. The
choosem function can be used to check if this number is suitable. This function computes the consensus
partition by considering only the first imputed data sets. By this way, a sequence of m consensus partitions is
obtained. Then, the rand index between successive partitions is computed and reported in a graph. The
rand index measures proximity between partitions. If the rand index between the last consensus partitions of
the sequence reaches its maximum values (1), then the number of imputed data sets does not modify the
consensus partition and this number can be considered as sufficiently large.
res.m <- choosem(res.pool.kmeans)

15

5 10 15 20

0.
98

0
0.

99
0

1.
00

0

m

ra
nd

 in
de

x

Here, the rand index is equal to 1 at m = 20 imputed data sets, meaning the consensus partition remains
unchanged between m = 19 and m = 20, and so probably beyond. Consequently, m = 20 was a suitable
choice.

4.3 Number of clusters
In practice, the number of clusters is generally unknown. A way to tune this number consists in inspecting
the instability according to the number of clusters (Fang and Wang (2012)). The more stable partition could
be retained. The choosenbclust function browses a grid of values for the number of clusters and for each
one imputes the data and computes the instability.
res.nbclust <- choosenbclust(res.pool.kmeans)

16

0.
10

0.
12

0.
14

0.
16

nb clust

To
ta

l i
ns

ta
bi

lit
y

2 3 4 5

On the wine data set, the number of clusters suggested is clearly 3.

5 Cluster description
After building a partition with missing values, a description of each cluster can be performed variable per
variable as follows:
require(reshape2)
require(ggplot2)
dat.m = melt(data.frame(wine.na, part = as.factor(part)), id.var=c("part"))
ggplot(dat.m, aes(part, value, col = part)) +

facet_wrap(variable~., scales = "free_y") +
geom_boxplot(width = 0.7)

17

prol

pro col hue ratio

mg phe fla nfla

alco malic ash alca

1 2 3

1 2 3 1 2 3 1 2 3

10

15

20

25

30

0.2
0.3
0.4
0.5
0.6

2

3

4

1.5

2.0

2.5

3.0

1

2

3

0.50
0.75
1.00
1.25
1.50
1.75

1
2
3
4
5

1

2

3

4

5

10

11

12

13

14

80

100

120

140

1

2

3

500

1000

1500

part

va
lu

e

part

1

2

3

or by investigating the relationships for each pair of variables
library(VIM)
pairsVIM(wine.na,

pch = 21,
col = c("red", "green3", "blue")[part],
cex = .2,
gap = 0)

18

alco

1 3 5 10 20 30 1.0 3.0 0.2 0.6 2 8 1.5 3.5

11
14

1
4 malic

ash

1.
5

10
25 alca

mg

80

1.
0

phe

fla

0.
5

3.
5

0.
2 nfla

pro

0.
5

2
10 col

hue

0.
6

1.
5

4.
0

ratio

11 13 1.5 3.0 80 140 0.5 2.5 0.5 2.5 0.6 1.4

prol

0.0 0.6

0.
0

1.
0

or from a multivariate point of view by using the principal component analysis, as proposed in the R packages
FactoMineR (Lê, Josse, and Husson (2008)) and missMDA (Josse and Husson (2016))
library(FactoMineR)
library(missMDA)
merge the partition variable with the incomplete data set
data.pca <- cbind.data.frame(class = factor(part, levels = seq(nb.clust)),

wine.na)
perform PCA with missing values by specifying where is the partition variable
res.imputepca <- imputePCA(data.pca, quali.sup = 1)
res.pca <- PCA(res.imputepca$completeObs, quali.sup = 1, graph = FALSE)
plot(res.pca, habillage = 1)

19

1

2

3

4

5

6

7
8

9

10

11
12

13 14

15

16

17

18

19

20

21

22 23

24

25

26

27
28 29
30

31
32

33
34

35
36

37
38

39

40
41

42

43

44

45

46

4748

49
50

51

52 5354
55

565758

59

60

61

62

63

64

65
66

67

68

69
70

71

72

73

74

75

76
77

78 7980

81

82

83

84

85
8687

88
89

90
9192

93

94

95

96

97

98
99

100
101

102
103

104

105
106

107

108

109

110
111

112

113

114
115

116

117

118
119

120

121

122

123

124
125

126

127

128 129

130

131132
133134

135

136

137
138

139

140
141

142

143
144

145
146

147

148
149

150 151

152
153

154

155

156
157158

159

160
161

162

163164165
166

167

168
169

170

171

172

173

174
175
176

177

178

class_1

class_2

class_3

−6

−3

0

3

6

−6 −3 0 3 6
Dim 1 (43.97%)

D
im

 2
 (

23
.8

9%
)

class

class_1

class_2

class_3

PCA graph of individuals

Finally, the consensus partition can be analysed by computing external clustering comparison indices as
proposed in the clusterCrit R package (Desgraupes (2023)) as follows:
library(clusterCrit)
res.crit <- extCriteria(part, ref, crit = "all")
round(unlist(res.crit), 2)
#> czekanowski_dice folkes_mallows hubert jaccard
#> 0.87 0.87 0.80 0.77
#> kulczynski mcnemar phi precision
#> 0.87 -2.73 0.00 0.86
#> rand recall rogers_tanimoto russel_rao
#> 0.91 0.88 0.84 0.29
#> sokal_sneath1 sokal_sneath2
#> 0.62 0.95

References
Asuncion, A., and D. J. Newman. 2007. “UCI Machine Learning Repository.” University of California, Irvine,

School of Information; Computer Sciences. http://archive.ics.uci.edu/ml.
Audigier, V., and N. Niang. 2022. “Clustering with missing data: which equivalent for Rubin’s rules?”

Advances in Data Analysis and Classification, September. https://doi.org/10.1007/s11634-022-00519-1.
Audigier, V., N. Niang, and M. Resche-Rigon. 2021. “Clustering with Missing Data: Which Imputation

Model for Which Cluster Analysis Method?” https://arxiv.org/abs/2106.04424.
Audigier, V., and M. Resche-Rigon. 2023. Micemd: Multiple Imputation by Chained Equations with Multilevel

Data. https://CRAN.R-project.org/package=micemd.

20

http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s11634-022-00519-1
https://arxiv.org/abs/2106.04424
https://CRAN.R-project.org/package=micemd

Barber, R. F., and E. J. Candès. 2015. “Controlling the false discovery rate via knockoffs.” The Annals of
Statistics 43 (5): 2055–85. https://doi.org/10.1214/15-AOS1337.

Bar-Hen, A., and V. Audigier. 2022. “An Ensemble Learning Method for Variable Selection: Application to
High-Dimensional Data and Missing Values.” Journal of Statistical Computation and Simulation 0 (0):
1–23. https://doi.org/10.1080/00949655.2022.2070621.

Blackwell, M., J. Honaker, and G. King. 2015. “A Unified Approach to Measurement Error and Missing
Data: Overview and Applications.” Sociological Methods and Research, 1–39.

Desgraupes, B. 2023. clusterCrit: Clustering Indices. https://CRAN.R-project.org/package=clusterCrit.
Fang, Y., and J. Wang. 2012. “Selection of the Number of Clusters via the Bootstrap Method.” Comput.

Stat. Data Anal. 56 (3): 468–77. https://doi.org/10.1016/j.csda.2011.09.003.
Joseph L. Schafer., Original by. 2022. Mix: Estimation/Multiple Imputation for Mixed Categorical and

Continuous Data. https://CRAN.R-project.org/package=mix.
Josse, J., and F. Husson. 2016. “missMDA: A Package for Handling Missing Values in Multivariate Data

Analysis.” Journal of Statistical Software 70 (1): 1–31. https://doi.org/10.18637/jss.v070.i01.
Kim, H. J. 2020. DPImputeCont. https://github.com/hang-j-kim/DPImputeCont.
Lê, S., J. Josse, and F. Husson. 2008. “FactoMineR: A Package for Multivariate Analysis.” Journal of

Statistical Software 25 (1): 1–18. https://doi.org/10.18637/jss.v025.i01.
Murray, J. S., and J. P. Reiter. 2015. “Multiple Imputation of Missing Categorical and Continuous Values

via Bayesian Mixture Models with Local Dependence.” http://arxiv.org/abs/1410.0438.
van Buuren, S., and K. Groothuis-Oudshoorn. 2011. “Mice: Multivariate Imputation by Chained Equations

in R.” Journal of Statistical Software 45 (3): 1–67. https://www.jstatsoft.org/v45/i03/.
Wang, Q., D. Manrique-Vallier, J. P. Reiter, and J. Hu. 2022. NPBayesImputeCat: Non-Parametric Bayesian

Multiple Imputation for Categorical Data. https://CRAN.R-project.org/package=NPBayesImputeCat.

21

https://doi.org/10.1214/15-AOS1337
https://doi.org/10.1080/00949655.2022.2070621
https://CRAN.R-project.org/package=clusterCrit
https://doi.org/10.1016/j.csda.2011.09.003
https://CRAN.R-project.org/package=mix
https://doi.org/10.18637/jss.v070.i01
https://github.com/hang-j-kim/DPImputeCont
https://doi.org/10.18637/jss.v025.i01
http://arxiv.org/abs/1410.0438
https://www.jstatsoft.org/v45/i03/
https://CRAN.R-project.org/package=NPBayesImputeCat

	Wine data set
	Full data set
	Adding missing values

	Multiple imputation
	Joint modelling imputation
	Fully conditional specification

	Analysis and pooling
	K means clustering and other implemented methods
	Custom clustering methods

	Diagnostics
	Imputation model
	Number of imputed data sets (m)
	Number of clusters

	Cluster description
	References

