We first load the library for cossonet and set a seed
for reproducibility.
{r, eval=FALSE, echo=FALSE, message=FALSE, warning=FALSE} devtools::install_github("jiieunshin/cossonet") library(cossonet) set.seed(20250101)
The function data_generation generates example datasets
with continuous response. We generate a training set with \(n=200\) and \(p=20\), and a test set with \(n=1000\) and \(p=20\).
{r, eval=FALSE, echo=FALSE, message=FALSE, warning=FALSE} tr = data_generation(n = 200, p = 20, SNR = 9, response = "continuous") te = data_generation(n = 1000, p = 20, SNR = 9, response = "continuous")
The function cossonet is the main function that fits the
model. We have to input training set in this function. And Specific
values are required to the arguments, such as family,
lambda0, andlambda_theta`.
```{r, eval=FALSE, echo=FALSE, message=FALSE, warning=FALSE} lambda0_seq = exp(seq(log(2^{-5}), log(2^{-1}), length.out = 20)) lambda_theta_seq = exp(seq(log(2^{-8}), log(2^{-5}), length.out = 20))
fit = cossonet(tr\(x, tr\)y, family = ‘gaussian’, lambda0 = lambda0_seq, lambda_theta = lambda_theta_seq )
## Prediction
The function `cossonet.predict` is used to predict new data based on the fitted model. The output includes predicted values $\hat{f}$ (from `f.new`) and $\hat{\mu}$ (from `mu.new`) for the new data. The predicted value and predictive accuracy for the test set using our fitted model can be obtained by
```{r, eval=FALSE, echo=FALSE, message=FALSE, warning=FALSE}
pred = cossonet.predict(fit, te$x)
mean((te$f - pred$f.new)^2)