duckspatial duckspatial website

CRAN status Lifecycle: experimental Codecov test coverage License: GPL v3 Project Status: Active – The project has reached a stable, usable state and is being actively developed.

duckspatial is an R package that simplifies the process of reading and writing vector spatial data (e.g., sf objects) in a DuckDB database. This package is designed for users working with geospatial data who want to leverage DuckDB’s fast analytical capabilities while maintaining compatibility with R’s spatial data ecosystem.

Installation

You can install the development version of duckspatial from GitHub with:

# install.packages("pak")
pak::pak("Cidree/duckspatial")

Example

This is a basic example which shows how to set up DuckDB for spatial data manipulation, and how to write/read vector data.

library(duckdb)
#> Cargando paquete requerido: DBI
library(duckspatial)
library(sf)
#> Linking to GEOS 3.13.1, GDAL 3.10.2, PROJ 9.5.1; sf_use_s2() is TRUE

First, we create a connection with a DuckDB database (in this case in memory database), and we make sure that the spatial extension is installed, and we load it:

## create connection
conn <- dbConnect(duckdb())

## install and load spatial extension
ddbs_install(conn)
#> ℹ spatial extension version <2905968> is already installed in this database
ddbs_load(conn)
#> ✔ Spatial extension loaded

Now we can get some data to insert into the database. We are creating 10,000,000 random points.

## random word generator
random_word <- function(length = 5) {
    paste0(sample(letters, length, replace = TRUE), collapse = "")
}

## create n points
n <- 10000000
random_points <- data.frame(
  id = 1:n,
  x = runif(n, min = -180, max = 180),  
  y = runif(n, min = -90, max = 90),
  a = sample(1:1000000, size = n, replace = TRUE),
  b = sample(replicate(10, random_word(7)), size = n, replace = TRUE),
  c = sample(replicate(10, random_word(9)), size = n, replace = TRUE)
)

## convert to sf
sf_points <- st_as_sf(random_points, coords = c("x", "y"), crs = 4326)

## view first rows
head(sf_points)
#> Simple feature collection with 6 features and 4 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -117.7598 ymin: -34.15453 xmax: 113.8518 ymax: 89.68161
#> Geodetic CRS:  WGS 84
#>   id      a       b         c                    geometry
#> 1  1 709998 bvwprwa izlhlvspq POINT (-100.8183 -34.15453)
#> 2  2 650017 jfgrvgp ikchdbklp   POINT (68.39046 25.59802)
#> 3  3 957513 vwmhulb tjevpihjs  POINT (-64.22538 42.72978)
#> 4  4 593853 elthvjo tqucqfpuu  POINT (-117.7598 16.73306)
#> 5  5 188177 elthvjo ddzbekmdx   POINT (113.8518 89.68161)
#> 6  6 245843 yksarig sjksxdtdg  POINT (28.08287 -19.54068)

Now we can insert the data into the database using the ddbs_write_vector() function. We use the proc.time() function to calculate how long does it take, and we can compare it with writing a shapefile with the write_sf() function:

## write data monitoring processing time
start_time <- proc.time()
ddbs_write_vector(conn, sf_points, "test_points")
#> ✔ Table test_points successfully imported
end_time <- proc.time()

## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed 
#>   18.64
## write data monitoring processing time
start_time <- proc.time()
gpkg_file <- tempfile(fileext = ".gpkg")
write_sf(sf_points, gpkg_file)
end_time <- proc.time()

## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed 
#>  244.23

In this case, we can see that DuckDB was 13.1 times faster. Now we will do the same exercise but reading the data back into R:

## write data monitoring processing time
start_time <- proc.time()
sf_points_ddbs <- ddbs_read_vector(conn, "test_points")
#> ✔ Table test_points successfully imported.
end_time <- proc.time()

## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed 
#>   61.91
## write data monitoring processing time
start_time     <- proc.time()
sf_points_ddbs <- read_sf(gpkg_file)
end_time       <- proc.time()

## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed 
#>   58.58

For reading, we got similar results. Finally, don’t forget to disconnect from the database:

dbDisconnect(conn)