Package ‘grepreaper’

January 23, 2026

Title Efficient Data Filtering and Aggregation Using Grep
Version 0.1.0

Description Provides an interface to the system-level 'grep' utility for
efficiently reading, filtering, and aggregating data from multiple flat
files. By pre-filtering data at the command line before it enters the
R environment, the package reduces memory overhead and improves
ingestion speed. Includes functions for counting records across large
file systems and supports recursive directory searching.

License MIT + file LICENSE
Encoding UTF-8

RoxygenNote 7.3.3

Suggests ggplot2, knitr, rmarkdown
VignetteBuilder knitr

Imports data.table, methods
NeedsCompilation no

Author David Shilane [aut],
Atharv Raskar [aut],
Akshat Maurya [aut, cre]

Maintainer Akshat Maurya <codingmaster902@gmail.com>
Repository CRAN
Date/Publication 2026-01-23 21:10:02 UTC

Contents

build_grep_cmd
GIEP_COUNL o o e e e e e e e e e e e e
grep_read L. e e e e e
split_columns e

Index

2 grep_count

build_grep_cmd Build grep command string

Description

Constructs a safe and properly formatted grep command string for system execution. This function
handles input sanitization by utilizing R’s internal shell quoting mechanism, ensuring compatibility
across different operating systems.

Usage

build_grep_cmd(pattern, files, options = "", fixed = FALSE)
Arguments

pattern Character vector of patterns to search for.

files Character vector of file paths to search in.

options Character string containing grep flags (e.g., "-i", "-v").

fixed Logical; if TRUE, grep is told to treat patterns as fixed strings.
Value

A properly formatted command string ready for system execution.

grep_count grep_count: Efficiently count the number of relevant records from one
or more files using grep

Description

grep_count: Efficiently count the number of relevant records from one or more files using grep

Usage

grep_count(
files = NULL,
path = NULL,
file_pattern = NULL,
pattern = "",
invert = FALSE,
ignore_case = FALSE,
fixed = FALSE,
recursive = FALSE,
word_match = FALSE,
only_matching = FALSE,

grep_read 3

skip = 0,
header = TRUE,
include_filename = FALSE,
show_cmd = FALSE,
show_progress = FALSE,

Arguments
files Character vector of file paths to read.
path Optional. Directory path to search for files.
file_pattern Optional. A pattern to filter filenames when using the path argument. Passed to
list.files.
pattern Pattern to search for within files (passed to grep).
invert Logical; if TRUE, return non-matching lines.

ignore_case Logical; if TRUE, perform case-insensitive matching (default: TRUE).

fixed Logical; if TRUE, pattern is a fixed string, not a regular expression.
recursive Logical; if TRUE, search recursively through directories.
word_match Logical; if TRUE, match only whole words.

only_matching Logical; if TRUE, return only the matching part of the lines.

skip Integer; number of rows to skip.

header Logical; if TRUE, treat first row as header.

include_filename
Logical; if TRUE, include source filename as a column.

show_cmd Logical; if TRUE, return the grep command string instead of executing it.
show_progress Logical; if TRUE, show progress indicators.

Additional arguments passed to fread.

Value

A data.table containing file names and counts.

grep_read grep_read: Efficiently read and filter lines from one or more files using
grep, returning a data.table.

Description

grep_read: Efficiently read and filter lines from one or more files using grep, returning a data.table.

grep_read(

files = NULL,
path = NULL,
file_pattern = NULL,

nn

pattern = "",

grep_read

invert = FALSE,
ignore_case = FALSE,

fixed = FALSE,

show_cmd = FALSE,
recursive = FALSE,
word_match = FALSE,
show_line_numbers = FALSE,
only_matching = FALSE,

nrows = Inf,

skip = 0,
header = TRUE,
col.names = NULL,

include_filename = FALSE,

show_progress

Arguments

files
path
file_pattern

pattern
invert
ignore_case
fixed
show_cmd
recursive

word_match

= FALSE,

Character vector of file paths to read.
Optional. Directory path to search for files.

Optional. A pattern to filter filenames when using the path argument. Passed to
list.files

Pattern to search for within files (passed to grep).

Logical; if TRUE, return non-matching lines.

Logical; if TRUE, perform case-insensitive matching (default: TRUE).
Logical; if TRUE, pattern is a fixed string, not a regular expression.
Logical; if TRUE, return the grep command string instead of executing it.
Logical; if TRUE, search recursively through directories.

Logical; if TRUE, match only whole words.

show_line_numbers

only_matching
nrows
skip

header

Logical; if TRUE, include line numbers from source files. Headers are automat-
ically removed and lines renumbered.

Logical; if TRUE, return only the matching part of the lines.
Integer; maximum number of rows to read.
Integer; number of rows to skip.

Logical; if TRUE, treat first row as header. Note that using FALSE means that
the first row will be included as a row of data in the reading process.

split_columns 5

col.names Character vector of column names.
include_filename

Logical; if TRUE, include source filename as a column.
show_progress Logical; if TRUE, show progress indicators.

Additional arguments passed to fread.

Value
A data.table with different structures based on the options:

e Default: Data columns with original types preserved

* show_line_numbers=TRUE: Additional ’line_number’ column (integer) with source file line
numbers

¢ include_filename=TRUE: Additional ’source_file’ column (character)
* only_matching=TRUE: Single *match’ column with matched substrings
* show_cmd=TRUE: Character string containing the grep command

Note

When searching for literal strings (not regex patterns), set fixed = TRUE to avoid regex interpre-
tation. For example, searching for "3.94" with fixed = FALSE will match "3894" because "." is a
regex metacharacter.

Header rows are automatically handled:

¢ With show_line_numbers=TRUE: Headers (line_number=1) are removed and lines renum-
bered
* Without line numbers: Headers matching column names are removed

* Empty rows and all-NA rows are automatically filtered out

split_columns Split columns based on a delimiter

Description

Efficiently splits character vectors into multiple columns based on a specified delimiter. This func-
tion is optimized for performance and handles common use cases like parsing grep output or other
delimited text data.

Usage

split_columns(
X,
column.names = NA,
split = ":",
resulting.columns = 3,
fixed = TRUE

6 split_columns

Arguments

X Character vector to split
column.names Names for the resulting columns (optional)

split Delimiter to split on (default: ":")
resulting.columns
Number of columns to create (default: 3)

fixed Whether to use fixed string matching (default: TRUE)

Value

A data.table with split columns. Column names are automatically assigned as V1, V2, V3, etc.
unless custom names are provided via column.names.

Examples
Split grep-like output with colon delimiter
data <- c("file.txt:15:error message”, "file.txt:23:warning message")
result <- split_columns(data, resulting.columns = 3)
print(result)

With custom column names

result_named <- split_columns(data,
column.names = c("filename”, "line", "message"),
resulting.columns = 3)

print(result_named)

Split into 2 columns (combining remaining elements)
result_2col <- split_columns(data, resulting.columns = 2)
print(result_2col)

Index

build_grep_cmd, 2

grep_count, 2
grep_read, 3

split_columns, 5

	build_grep_cmd
	grep_count
	grep_read
	split_columns
	Index

