![]()
# please download the Github version
# devtools::install_github("hadrilec/insee")
library(ggplot2)
library(dplyr)
library(magrittr)
library(insee)
dataset_list = get_dataset_list()
df_idbank_list_selected =
get_idbank_list("POPULATION-STRUCTURE") %>% #population dataset
add_insee_title() %>%
filter(INDICATEUR == "POPULATION_1ER_JANVIER") %>% #population at the beginning of the year
filter(REF_AREA == "FE") %>% # all France including overseas departements
filter(SEXE == 0) %>% # men and women
filter(AGE %in% c("00-19", "20-59", "60-")) #age ranges
list_idbank = df_idbank_list_selected %>% pull(idbank)
data = get_insee_idbank(list_idbank)
data_plot =
data %>%
split_title() %>%
add_insee_metadata() %>%
mutate(OBS_VALUE = OBS_VALUE / 10^6)
ggplot(data_plot, aes(x = DATE, y = OBS_VALUE, fill = TITLE_EN3)) +
geom_area() +
ggtitle("French population in millions, by age") +
labs(subtitle = sprintf("Last updated : %s", data_plot$TIME_PERIOD[1]))