mvout: Robust Multivariate Outlier Detection

Detection of multivariate outliers using robust estimates of location and scale. The Minimum Covariance Determinant (MCD) estimator is used to calculate robust estimates of the mean vector and covariance matrix. Outliers are determined based on robust Mahalanobis distances using either an unstructured covariance matrix, a principal components structured covariance matrix, or a factor analysis structured covariance matrix. Includes options for specifying the direction of interest for outlier detection for each variable.

Version: 1.2
Depends: R (≥ 3.5.0), robustbase
Published: 2025-05-30
DOI: 10.32614/CRAN.package.mvout
Author: Jesus E. Delgado [aut], Jed T. Elison [ctb], Nathaniel E. Helwig [aut, cre]
Maintainer: Nathaniel E. Helwig <helwig at umn.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: mvout citation info
Materials: ChangeLog
CRAN checks: mvout results

Documentation:

Reference manual: mvout.pdf

Downloads:

Package source: mvout_1.2.tar.gz
Windows binaries: r-devel: mvout_1.2.zip, r-release: mvout_1.2.zip, r-oldrel: mvout_1.2.zip
macOS binaries: r-release (arm64): mvout_1.2.tgz, r-oldrel (arm64): mvout_1.2.tgz, r-release (x86_64): mvout_1.2.tgz, r-oldrel (x86_64): mvout_1.2.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mvout to link to this page.