
Package ‘pointblank’
October 23, 2024

Type Package

Version 0.12.2

Title Data Validation and Organization of Metadata for Local and
Remote Tables

Description Validate data in data frames, 'tibble' objects, 'Spark'
'DataFrames', and database tables. Validation pipelines can be made using
easily-readable, consecutive validation steps. Upon execution of the
validation plan, several reporting options are available. User-defined
thresholds for failure rates allow for the determination of appropriate
reporting actions. Many other workflows are available including an
information management workflow, where the aim is to record, collect, and
generate useful information on data tables.

License MIT + file LICENSE

URL https://rstudio.github.io/pointblank/,

https://github.com/rstudio/pointblank

BugReports https://github.com/rstudio/pointblank/issues

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports base64enc (>= 0.1-3), blastula (>= 0.3.3), cli (>= 3.6.0), DBI
(>= 1.1.0), digest (>= 0.6.27), dplyr (>= 1.0.10), dbplyr (>=
2.3.0), fs (>= 1.6.0), glue (>= 1.6.2), gt (>= 0.9.0),
htmltools (>= 0.5.4), knitr (>= 1.42), rlang (>= 1.0.3),
magrittr, scales (>= 1.2.1), testthat (>= 3.1.6), tibble (>=
3.1.8), tidyr (>= 1.3.0), tidyselect (>= 1.2.0), yaml (>=
2.3.7)

Suggests arrow, bigrquery, data.table, duckdb, ggforce, ggplot2,
jsonlite, log4r, lubridate, RSQLite, RMySQL, RPostgres, readr,
rmarkdown, sparklyr, dittodb, odbc

1

https://rstudio.github.io/pointblank/
https://github.com/rstudio/pointblank
https://github.com/rstudio/pointblank/issues

2 Contents

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>),
Mauricio Vargas [aut] (<https://orcid.org/0000-0003-1017-7574>),
June Choe [aut] (<https://orcid.org/0000-0002-0701-921X>)

Maintainer Richard Iannone <rich@posit.co>

Repository CRAN

Date/Publication 2024-10-23 03:50:02 UTC

Contents
action_levels . 4
activate_steps . 9
affix_date . 11
affix_datetime . 13
all_passed . 16
col_count_match . 18
col_exists . 24
col_is_character . 30
col_is_date . 36
col_is_factor . 42
col_is_integer . 47
col_is_logical . 53
col_is_numeric . 59
col_is_posix . 65
col_schema . 71
col_schema_match . 73
col_vals_between . 80
col_vals_decreasing . 89
col_vals_equal . 98
col_vals_expr . 106
col_vals_gt . 113
col_vals_gte . 121
col_vals_increasing . 129
col_vals_in_set . 137
col_vals_lt . 145
col_vals_lte . 152
col_vals_make_set . 160
col_vals_make_subset . 168
col_vals_not_between . 175
col_vals_not_equal . 185
col_vals_not_in_set . 192
col_vals_not_null . 200
col_vals_null . 207
col_vals_regex . 214
col_vals_within_spec . 222
conjointly . 231

https://orcid.org/0000-0003-3925-190X
https://orcid.org/0000-0003-1017-7574
https://orcid.org/0000-0002-0701-921X

Contents 3

create_agent . 239
create_informant . 247
create_multiagent . 252
db_tbl . 255
deactivate_steps . 261
draft_validation . 262
email_blast . 268
email_create . 272
export_report . 274
file_tbl . 277
from_github . 281
game_revenue . 283
game_revenue_info . 284
get_agent_report . 285
get_agent_x_list . 290
get_data_extracts . 293
get_informant_report . 295
get_multiagent_report . 297
get_sundered_data . 302
get_tt_param . 306
has_columns . 308
incorporate . 311
info_columns . 313
info_columns_from_tbl . 317
info_section . 319
info_snippet . 323
info_tabular . 326
interrogate . 329
log4r_step . 331
read_disk_multiagent . 334
remove_steps . 335
rows_complete . 337
rows_distinct . 344
row_count_match . 350
scan_data . 358
serially . 360
set_tbl . 368
small_table . 369
small_table_sqlite . 370
snip_highest . 371
snip_list . 372
snip_lowest . 375
snip_stats . 376
specially . 377
specifications . 385
stock_msg_body . 386
stock_msg_footer . 386
stop_if_not . 387

4 action_levels

tbl_get . 388
tbl_match . 390
tbl_source . 397
tbl_store . 399
tt_string_info . 407
tt_summary_stats . 409
tt_tbl_colnames . 412
tt_tbl_dims . 414
tt_time_shift . 415
tt_time_slice . 417
validate_rmd . 420
write_testthat_file . 421
x_read_disk . 426
x_write_disk . 428
yaml_agent_interrogate . 433
yaml_agent_show_exprs . 434
yaml_agent_string . 436
yaml_exec . 438
yaml_informant_incorporate . 441
yaml_read_agent . 442
yaml_read_informant . 444
yaml_write . 445

Index 452

action_levels Set action levels: failure thresholds and functions to invoke

Description

The action_levels() function works with the actions argument that is present in the create_agent()
function and in every validation step function (which also has an actions argument). With it, we
can provide threshold failure values for any combination of warn, stop, or notify failure states.

We can react to any entering of a state by supplying corresponding functions to the fns argu-
ment. They will undergo evaluation at the time when the matching state is entered. If provided to
create_agent() then the policies will be applied to every validation step, acting as a default for
the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act
as an override if set also in create_agent(). Usage of action_levels() is required to have
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions oper-
ating directly on data (e.g., mtcars %>% col_vals_lt("mpg", 35)). There are two helper func-
tions that are convenient when using validation functions directly on data (the agent-less work-
flow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default fail-
ure threshold for each is set to 1), and, they do so with informative warning or error messages.
The stop_on_fail() helper is applied by default when using validation functions directly on data
(more information on this is provided in Details).

action_levels 5

Usage

action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at = 1)

stop_on_fail(stop_at = 1)

Arguments

warn_at Threshold value for the ’warn’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the warn failure state.

stop_at Threshold value for the ’stop’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the stop failure state.

notify_at Threshold value for the ’notify’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the notify failure state.

fns Functions to execute when entering failure states
list // default: NULL (optional)
A named list of functions that is to be paired with the appropriate failure states.
The syntax for this list involves using failure state names from the set of warn,
stop, and notify. The functions corresponding to the failure states are pro-
vided as formulas (e.g., list(warn = ~ warning("Too many failures.")). A
series of expressions for each named state can be used by enclosing the set of
statements with { }.

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using
an agent or using validation functions directly on a data table. For convenience, when working
directly on data, any values supplied to warn_at or stop_at will be automatically given a stock
warning() or stop() function. For example using small_table %>% col_is_integer("date")
will provide a detailed stop message by default, indicating the reason for the failure. If you were
to supply the fns for stop or warn manually then the stock functions would be overridden. Fur-
thermore, if actions is NULL in this workflow (the default), pointblank will use a stop_at value
of 1 (providing a detailed, context-specific error message if there are any failing units). We can
absolutely suppress this automatic stopping behavior at each validation step by setting active =
FALSE. In this interactive data case, there is no stock function given for notify_at. The notify
failure state is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify
failure states will be reported on when using create_agent_report() (and, usually that’s suffi-
cient). Instead, using the end_fns argument is a better choice since that scheme provides useful

6 action_levels

data on the entire interrogation, allowing for finer control on side effects and reducing potential for
duplicating any side effects.

Value

An action_levels object.

Defining threshold values

Any threshold values supplied for the warn_at, stop_at, or notify_at arguments correspond to
the warn, stop, and notify failure states, respectively. A threshold value can either relates to an
absolute number of test units or a fraction-of-total test units that are failing. Exceeding the threshold
means entering one or more of the warn, stop, or notify failure states.

If a threshold value is a decimal value between 0 and 1 then it’s a proportional failure threshold
(e.g., 0.15 indicates that if 15 percent of the test units are found to be failing, then the designated
failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes
an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to be failing, the
failure state is entered).

Examples

For these examples, we will use the included small_table dataset.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Create an action_levels object with fractional values for the warn, stop, and notify states.

al <-
action_levels(
warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.5

)

action_levels 7

A summary of settings for the al object is shown by printing it.

Create a pointblank agent and apply the al object to actions. Add two validation steps and inter-
rogate the small_table.

agent_1 <-
create_agent(
tbl = small_table,
actions = al

) %>%
col_vals_gt(
columns = a, value = 2

) %>%
col_vals_lt(
columns = d, value = 20000

) %>%
interrogate()

The report from the agent will show that the warn state has been entered for the first validation step
but not the second one. We can confirm this in the console by inspecting the warn component in the
agent’s x-list.

x_list <- get_agent_x_list(agent = agent_1)

x_list$warn

[1] TRUE FALSE

Applying the action_levels object to the agent means that all validation steps will inherit these
settings but we can override this by applying another such object to the validation step instead (this
time using the warn_on_fail() shorthand).

agent_2 <-
create_agent(
tbl = small_table,
actions = al

) %>%
col_vals_gt(
columns = a, value = 2,
actions = warn_on_fail(warn_at = 0.5)

) %>%
col_vals_lt(
columns = d, value = 20000

) %>%
interrogate()

In this case, the first validation step has a less stringent failure threshold for the warn state and
it’s high enough that the condition is not entered. This can be confirmed in the console through
inspection of the x-list warn component.

8 action_levels

x_list <- get_agent_x_list(agent = agent_2)

x_list$warn

[1] FALSE FALSE

In the context of using validation functions directly on data (i.e., no involvement of an agent) we
want to trigger warnings and raise errors. The following will yield a warning if it is executed
(returning the small_table data).

small_table %>%
col_vals_gt(
columns = a, value = 2,
actions = warn_on_fail(warn_at = 2)

)

A tibble: 13 × 8
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE
. . . with 1 more variable: f <chr>
Warning message:
Exceedance of failed test units where values in `a` should have been >
`2`.
The `col_vals_gt()` validation failed beyond the absolute threshold
level (2).
* failure level (4) >= failure threshold (2)

With the same pipeline, not supplying anything for actions (it’s NULL by default) will have the
same effect as using stop_on_fail(stop_at = 1).

small_table %>%
col_vals_gt(columns = a, value = 2)

Error: Exceedance of failed test units where values in `a` should have
been > `2`.

activate_steps 9

The `col_vals_gt()` validation failed beyond the absolute threshold
level (1).
* failure level (4) >= failure threshold (1)

Here’s the equivalent set of statements:

small_table %>%
col_vals_gt(
columns = a, value = 2,
actions = stop_on_fail(stop_at = 1)

)

Error: Exceedance of failed test units where values in `a` should have
been > `2`.
The `col_vals_gt()` validation failed beyond the absolute threshold
level (1).
* failure level (4) >= failure threshold (1)

This is because the stop_on_fail() call is auto-injected in the default case (when operating on
data) for your convenience. Behind the scenes a ’secret agent’ uses ’covert actions’: all so you can
type less.

Function ID

1-5

See Also

Other Planning and Prep: create_agent(), create_informant(), db_tbl(), draft_validation(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

activate_steps Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent,
use the activate_steps() function. This is equivalent to using the active = TRUE for the selected
validation steps (active is an argument in all validation functions). This will replace any function
that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)

10 activate_steps

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

i A validation step number
scalar<integer> // default: NULL (optional)
The validation step number, which is assigned to each validation step in the order
of definition. If NULL (the default) then step activation won’t occur by index.

Value

A ptblank_agent object.

Function ID

9-5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

Examples

Create an agent that has the
`small_table` object as the
target table, add a few inactive
validation steps, and then use
`interrogate()`
agent_1 <-

create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example."

) %>%
col_exists(

columns = date,
active = FALSE

) %>%
col_vals_regex(

columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}",
active = FALSE

) %>%
interrogate()

In the above, the data is
not actually interrogated

affix_date 11

because the `active` setting
was `FALSE` in all steps; we
can selectively change this
with `activate_steps()`
agent_2 <-

agent_1 %>%
activate_steps(i = 1) %>%
interrogate()

affix_date Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing agent and/or
informant objects to disk as part of a continuous process. The date can be in terms of UTC time
or the local system time. The date can be affixed either to the end of the filename (before the file
extension) or at the beginning with a customizable delimiter.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk.
Furthermore the log4r_step() function has the append_to argument that accepts filenames, and,
it’s reasonable that a series of log files could be differentiated by a date component in the naming
scheme. The modification of the filename string takes effect immediately but not at the time of
writing a file to disk. In most cases, especially when using affix_date() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the
filenames.

Usage

affix_date(
filename,
position = c("end", "start"),
format = "%Y-%m-%d",
delimiter = "_",
utc_time = TRUE

)

Arguments

filename The filename to modify.

position Where to place the formatted date. This could either be at the "end" of the
filename (the default) or at the "start".

format A base::strptime() format string for formatting the date. By default, this is
"%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as
YYYY-MM-DD). Refer to the documentation on base::strptime() for conversion
specifications if planning to use a different format string.

12 affix_date

delimiter The delimiter characters to use for separating the date string from the original
file name.

utc_time An option for whether to use the current UTC time to establish the date (the
default, with TRUE), or, use the system’s local time (FALSE).

Value

A character vector.

Examples

The basics of creating a filename with the current date:
Taking the generic "pb_file" name for a file, we add the current date to it as a suffix.

affix_date(filename = "pb_file")

[1] "pb_file_2022-04-01"

File extensions won’t get in the way:

affix_date(filename = "pb_file.rds")

[1] "pb_file_2022-04-01.rds"

The date can be used as a prefix.

affix_date(
filename = "pb_file",
position = "start"

)

[1] "2022-04-01_pb_file"

The date pattern can be changed and so can the delimiter.

affix_date(
filename = "pb_file.yml",
format = "%Y%m%d",
delimiter = "-"

)

[1] "pb_file-20220401.yml"

Using a date-based filename in a pointblank workflow:
We can use a file-naming convention involving dates when writing output files immediately after
interrogating. This is just one example (any workflow involving a filename argument is applica-
ble). It’s really advantageous to use date-based filenames when interrogating directly from YAML
in a scheduled process.

affix_datetime 13

yaml_agent_interrogate(
filename = system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)
) %>%
x_write_disk(
filename = affix_date(
filename = "small_table_agent.rds",
delimiter = "-"

),
keep_tbl = TRUE,
keep_extracts = TRUE

)

In the above, we used the written-to-disk agent (The "agent-small_table.yml" YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_date() function was used
to ensure that a daily run would produce a file whose name indicates the day of execution.

Function ID

13-3

See Also

The affix_datetime() function provides the same features except it produces a datetime string
by default.

Other Utility and Helper Functions: affix_datetime(), col_schema(), from_github(), has_columns(),
stop_if_not()

affix_datetime Put the current datetime into a file name

Description

This function helps to affix the current datetime to a filename. This is useful when writing agent
and/or informant objects to disk as part of a continuous process. The datetime string can be based on
the current UTC time or the local system time. The datetime can be affixed either to the end of the
filename (before the file extension) or at the beginning with a customizable delimiter. Optionally,
the time zone information can be included. If the datetime is based on the local system time, the
user system time zone is shown with the format <time>(+/-)hhmm. If using UTC time, then the
<time>Z format is adopted.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to
disk. The modification of the filename string takes effect immediately but not at the time of writing
a file to disk. In most cases, especially when using affix_datetime() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the
filenames.

14 affix_datetime

Usage

affix_datetime(
filename,
position = c("end", "start"),
format = "%Y-%m-%d_%H-%M-%S",
delimiter = "_",
utc_time = TRUE,
add_tz = FALSE

)

Arguments

filename The filename to modify.

position Where to place the formatted datetime. This could either be at the "end" of the
filename (the default) or at the "start".

format A base::strptime() format string for formatting the datetime. By default,
this is "%Y-%m-%dT%H:%M:%S" which expresses the date according to the ISO
8601 standard. For example, if the current datetime is 2020-12-04 13:11:23,
the formatted string would become "2020-12-04T13:11:23". Refer to the doc-
umentation on base::strptime() for conversion specifications if planning to
use a different format string.

delimiter The delimiter characters to use for separating the datetime string from the orig-
inal file name.

utc_time An option for whether to use the current UTC time to establish the datetime (the
default, with TRUE), or, use the system’s local time (FALSE).

add_tz Should the time zone (as an offset from UTC) be provided? If TRUE then
the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or
<time>(+/-)hhmm. By default, this is FALSE.

Value

A character vector.

Examples

The basics of creating a filename with the current date and time:
Taking the generic "pb_file" name for a file, we add the current datetime to it as a suffix.

affix_datetime(filename = "pb_file")

[1] "pb_file_2022-04-01_00-32-53"

File extensions won’t get in the way:

affix_datetime(filename = "pb_file.rds")

[1] "pb_file_2022-04-01_00-32-53.rds"

The datetime can be used as a prefix.

affix_datetime 15

affix_datetime(
filename = "pb_file",
position = "start"

)

[1] "2022-04-01_00-32-53_pb_file"

The datetime pattern can be changed and so can the delimiter.

affix_datetime(
filename = "pb_file.yml",
format = "%Y%m%d_%H%M%S",
delimiter = "-"

)

[1] "pb_file-20220401_003253.yml"

Time zone information can be included. By default, all datetimes are given in the UTC time zone.

affix_datetime(
filename = "pb_file.yml",
add_tz = TRUE

)

[1] "pb_file_2022-04-01_00-32-53Z.yml"

We can use the system’s local time zone with utc_time = FALSE.

affix_datetime(
filename = "pb_file.yml",
utc_time = FALSE,
add_tz = TRUE

)

[1] "pb_file_2022-03-31_20-32-53-0400.yml"

Using a datetime-based filename in a pointblank workflow:
We can use a file-naming convention involving datetimes when writing output files immediately
after interrogating. This is just one example (any workflow involving a filename argument is
applicable). It’s really advantageous to use datetime-based filenames when interrogating directly
from YAML in a scheduled process, especially if multiple validation runs per day are being exe-
cuted on the same target table.

yaml_agent_interrogate(
filename = system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)
) %>%
x_write_disk(
filename = affix_datetime(
filename = "small_table_agent.rds",
delimiter = "-"

16 all_passed

),
keep_tbl = TRUE,
keep_extracts = TRUE

)

In the above, we used the written-to-disk agent (The "agent-small_table.yml" YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_datetime() function was
used to ensure that frequent runs would produce files whose names indicate the day and time of
execution.

Function ID

13-4

See Also

The affix_date() function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: affix_date(), col_schema(), from_github(), has_columns(),
stop_if_not()

all_passed Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via interrogate(), did every
single validation step result in zero failing test units? Using the all_passed() function will let us
know whether that’s TRUE or not.

Usage

all_passed(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

i Validation step numbers
vector<integer> // default: NULL (optional)
A vector of validation step numbers. These values are assigned to each vali-
dation step by pointblank in the order of definition. If NULL (the default), all
validation steps will be used for the evaluation of complete passing.

all_passed 17

Details

The all_passed() function provides a single logical value based on an interrogation performed in
the agent-based workflow. For very large-scale validation (where data quality is a known issue, and
is perhaps something to be tamed over time) this function is likely to be less useful since it is quite
stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alterna-
tive is in using the test (test_*()) variants of the validation functions. Each of those produce a sin-
gle logical value and each and have a threshold option for failure levels. Another option is to uti-
lize post-interrogation objects within the agent’s x-list (obtained by using the get_agent_x_list()
function). This allows for many possibilities in producing a single logical value from an interroga-
tion.

Value

A logical value.

Examples

Create a simple table with a column of numerical values.

tbl <- dplyr::tibble(a = c(4, 5, 7, 8))

tbl
#> # A tibble: 4 x 1
#> a
#> <dbl>
#> 1 4
#> 2 5
#> 3 7
#> 4 8

Validate that values in column a are always greater than 4.

agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(columns = a, value = 3) %>%
col_vals_lte(columns = a, value = 10) %>%
col_vals_increasing(columns = a) %>%
interrogate()

Determine if these column validations have all passed by using all_passed() (they do).

all_passed(agent = agent)

#> [1] TRUE

Function ID

8-4

18 col_count_match

See Also

Other Post-interrogation: get_agent_x_list(), get_data_extracts(), get_sundered_data(),
write_testthat_file()

col_count_match Does the column count match that of a different table?

Description

The col_count_match() validation function, the expect_col_count_match() expectation func-
tion, and the test_col_count_match() test function all check whether the column count in the
target table matches that of a comparison table. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. As a validation step or as an expectation, there
is a single test unit that hinges on whether the column counts for the two tables are the same (after
any preconditions have been applied).

Usage

col_count_match(
x,
count,
preconditions = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_count_match(object, count, preconditions = NULL, threshold = 1)

test_col_count_match(object, count, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

count The count comparison
scalar<numeric|integer>|obj:<tbl_*> // required
Either a literal value for the number of columns, or, a table to compare against
the target table in terms of column count values. If supplying a comparison table,
it can either be a table object such as a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, a table-prep formula (~ <tbl reading code>)

col_count_match 19

or a function (function() <tbl reading code>) can be used to lazily read
in the comparison table at interrogation time.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data

20 col_count_match

through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)

– MySQL tables (with RMySQL::MySQL())

– Microsoft SQL Server tables (via odbc)

– BigQuery tables (using bigrquery::bigquery())

– DuckDB tables (through duckdb::duckdb())

– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

col_count_match 21

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some op-
eration on the target table before the column count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table
and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_count_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_count_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

22 col_count_match

agent %>%
col_count_match(
count = ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

),
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_count_match()` step.",
active = FALSE

)

YAML representation:

steps:
- col_count_match:

count: ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

)
preconditions: ~. %>% dplyr::filter(a < 10)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_count_match()` step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns and three rows of values:

tbl <-
dplyr::tibble(
a = c(5, 7, 6),
b = c(7, 1, 0),
c = c(1, 1, 1)

)

col_count_match 23

tbl
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1

Create a second table which is quite different but has the same number of columns as tbl.

tbl_2 <-
dplyr::tibble(
e = c("a", NA, "a", "c"),
f = c(2.6, 1.2, 0, NA),
g = c("f", "g", "h", "i")

)

tbl_2
#> # A tibble: 4 x 3
#> e f g
#> <chr> <dbl> <chr>
#> 1 a 2.6 f
#> 2 <NA> 1.2 g
#> 3 a 0 h
#> 4 c NA i

We’ll use these tables with the different function variants.

A: Using an agent with validation functions and then interrogate():
Validate that the count of columns in the target table (tbl) matches that of the comparison table
(tbl_2).

agent <-
create_agent(tbl = tbl) %>%
col_count_match(count = tbl_2) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter: data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_count_match(count = tbl_2)
#> # A tibble: 3 x 3

24 col_exists

#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_count_match(tbl, count = tbl_2)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_count_match(count = 3)
#> [1] TRUE

Function ID

2-32

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_exists Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the
test_col_exists() test function all check whether one or more columns exist in the target table.
The only requirement is specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expectation
will operate over a single test unit, which is whether the column exists or not.

col_exists 25

Usage

col_exists(
x,
columns = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

26 col_exists

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

col_exists 27

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

28 col_exists

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_exists() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_exists() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
col_exists(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_exists()` step.",
active = FALSE

)

YAML representation:

steps:
- col_exists:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_exists()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with two columns: a and b.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),

col_exists 29

b = c(7, 1, 0, 0, 0, 3)
)

tbl
#> # A tibble: 6 x 2
#> a b
#> <dbl> <dbl>
#> 1 5 7
#> 2 7 1
#> 3 6 0
#> 4 5 0
#> 5 8 0
#> 6 7 3

We’ll use this table with the different function variants.

A: Using an agent with validation functions and then interrogate():
Validate that column a exists in the tbl table with col_exists().

agent <-
create_agent(tbl = tbl) %>%
col_exists(columns = a) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_exists(columns = a)
#> # A tibble: 6 x 2
#> a b
#> <dbl> <dbl>
#> 1 5 7
#> 2 7 1
#> 3 6 0
#> 4 5 0
#> 5 8 0
#> 6 7 3

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_exists(tbl, columns = a)

30 col_is_character

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_exists(columns = a)
#> [1] TRUE

Function ID

2-29

See Also

Other validation functions: col_count_match(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_character Do the columns contain character/string data?

Description

The col_is_character() validation function, the expect_col_is_character() expectation func-
tion, and the test_col_is_character() test function all check whether one or more columns in a
table is of the character type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly
on a data table or with an agent object (technically, a ptblank_agent object) whereas the expecta-
tion and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a character-type column or not.

Usage

col_is_character(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_character(object, columns, threshold = 1)

test_col_is_character(object, columns, threshold = 1)

col_is_character 31

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

32 col_is_character

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

col_is_character 33

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_character() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_is_character() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

34 col_is_character

agent %>%
col_is_character(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_character()` step.",
active = FALSE

)

YAML representation:

steps:
- col_is_character:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_character()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with a numeric column (a) and a character column
(b).

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = LETTERS[1:6]

)

tbl
#> # A tibble: 6 x 2
#> a b
#> <dbl> <chr>
#> 1 5 A
#> 2 7 B
#> 3 6 C
#> 4 5 D
#> 5 8 E
#> 6 7 F

We’ll use this table with the different function variants.

col_is_character 35

A: Using an agent with validation functions and then interrogate():
Validate that column b has the character class.

agent <-
create_agent(tbl = tbl) %>%
col_is_character(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_is_character(columns = b) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 2
#> a b
#> <dbl> <chr>
#> 1 5 A
#> 2 7 B
#> 3 6 C
#> 4 5 D
#> 5 8 E

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_character(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_is_character(columns = b)
#> [1] TRUE

Function ID

2-22

See Also

Other validation functions: col_count_match(), col_exists(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),

36 col_is_date

col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_date Do the columns contain R Date objects?

Description

The col_is_date() validation function, the expect_col_is_date() expectation function, and the
test_col_is_date() test function all check whether one or more columns in a table is of the R
Date type. Like many of the col_is_*()-type functions in pointblank, the only requirement is
a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
a single test unit, which is whether the column is a Date-type column or not.

Usage

col_is_date(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_date(object, columns, threshold = 1)

test_col_is_date(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

col_is_date 37

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

38 col_is_date

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)

– MySQL tables (with RMySQL::MySQL())

– Microsoft SQL Server tables (via odbc)

– BigQuery tables (using bigrquery::bigquery())

– DuckDB tables (through duckdb::duckdb())

– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

col_is_date 39

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_date() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_date() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_date(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_date()` step.",
active = FALSE

)

YAML representation:

40 col_is_date

steps:
- col_is_date:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_date()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has a date column. The following examples will validate
that that column is of the Date class.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column date has the Date class.

agent <-
create_agent(tbl = small_table) %>%
col_is_date(columns = date) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

col_is_date 41

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_date(columns = date) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_date(small_table, columns = date)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_date(columns = date)
#> [1] TRUE

Function ID

2-26

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

42 col_is_factor

col_is_factor Do the columns contain R factor objects?

Description

The col_is_factor() validation function, the expect_col_is_factor() expectation function,
and the test_col_is_factor() test function all check whether one or more columns in a table is
of the factor type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
a single test unit, which is whether the column is a factor-type column or not.

Usage

col_is_factor(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_factor(object, columns, threshold = 1)

test_col_is_factor(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

col_is_factor 43

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

44 col_is_factor

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the

col_is_factor 45

col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_factor() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_factor() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_factor(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_factor()` step.",
active = FALSE

)

YAML representation:

steps:
- col_is_factor:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_factor()` step.
active: false

46 col_is_factor

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

Let’s modify the f column in the small_table dataset so that the values are factors instead of hav-
ing the character class. The following examples will validate that the f column was successfully
mutated and now consists of factors.

tbl <-
small_table %>%
dplyr::mutate(f = factor(f))

tbl
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <fct>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column f in the tbl object is of the factor class.

agent <-
create_agent(tbl = tbl) %>%
col_is_factor(columns = f) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

col_is_integer 47

tbl %>%
col_is_factor(columns = f) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <fct>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_factor(tbl, f)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_is_factor(columns = f)
#> [1] TRUE

Function ID

2-28

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_integer Do the columns contain integer values?

48 col_is_integer

Description

The col_is_integer() validation function, the expect_col_is_integer() expectation function,
and the test_col_is_integer() test function all check whether one or more columns in a table is
of the integer type. Like many of the col_is_*()-type functions in pointblank, the only require-
ment is a specification of the column names. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table. Each validation step or expectation will operate
over a single test unit, which is whether the column is an integer-type column or not.

Usage

col_is_integer(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,

col_is_integer 49

and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

50 col_is_integer

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

col_is_integer 51

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_integer() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_integer() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_integer(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_integer()` step.",
active = FALSE

)

YAML representation:

steps:
- col_is_integer:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_integer()` step.
active: false

52 col_is_integer

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with a character column (a) and a integer column
(b).

tbl <-
dplyr::tibble(
a = letters[1:6],
b = 2:7

)

tbl
#> # A tibble: 6 x 2
#> a b
#> <chr> <int>
#> 1 a 2
#> 2 b 3
#> 3 c 4
#> 4 d 5
#> 5 e 6
#> 6 f 7

A: Using an agent with validation functions and then interrogate():
Validate that column b has the integer class.

agent <-
create_agent(tbl = tbl) %>%
col_is_integer(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_is_integer(columns = b)
#> # A tibble: 6 x 2
#> a b
#> <chr> <int>
#> 1 a 2

col_is_logical 53

#> 2 b 3
#> 3 c 4
#> 4 d 5
#> 5 e 6
#> 6 f 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_integer(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_is_integer(columns = b)
#> [1] TRUE

Function ID

2-24

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_logical Do the columns contain logical values?

Description

The col_is_logical() validation function, the expect_col_is_logical() expectation function,
and the test_col_is_logical() test function all check whether one or more columns in a table
is of the logical (TRUE/FALSE) type. Like many of the col_is_*()-type functions in pointblank,
the only requirement is a specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expectation
will operate over a single test unit, which is whether the column is an logical-type column or not.

54 col_is_logical

Usage

col_is_logical(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

col_is_logical 55

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

56 col_is_logical

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

col_is_logical 57

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_logical() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_logical() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_logical(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_logical()` step.",
active = FALSE

)

YAML representation:

steps:
- col_is_logical:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_logical()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has an e column which has logical values. The following
examples will validate that that column is of the logical class.

small_table
#> # A tibble: 13 x 8

58 col_is_logical

#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column e has the logical class.

agent <-
create_agent(tbl = small_table) %>%
col_is_logical(columns = e) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_logical(columns = e) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_logical(small_table, columns = e)

col_is_numeric 59

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_logical(columns = e)
#> [1] TRUE

Function ID

2-25

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_numeric Do the columns contain numeric values?

Description

The col_is_numeric() validation function, the expect_col_is_numeric() expectation function,
and the test_col_is_numeric() test function all check whether one or more columns in a table
is of the numeric type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

col_is_numeric(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)

60 col_is_numeric

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

col_is_numeric 61

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

62 col_is_numeric

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_numeric() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_numeric() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

col_is_numeric 63

agent %>%
col_is_numeric(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_numeric()` step.",
active = FALSE

)

YAML representation:

steps:
- col_is_numeric:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_numeric()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has a d column that is known to be numeric. The following
examples will validate that that column is indeed of the numeric class.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

64 col_is_numeric

A: Using an agent with validation functions and then interrogate():
Validate that the column d has the numeric class.

agent <-
create_agent(tbl = small_table) %>%
col_is_numeric(columns = d) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_numeric(columns = d) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_numeric(small_table, columns = d)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_numeric(columns = d)
#> [1] TRUE

Function ID

2-23

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),

col_is_posix 65

col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_is_posix Do the columns contain POSIXct dates?

Description

The col_is_posix() validation function, the expect_col_is_posix() expectation function, and
the test_col_is_posix() test function all check whether one or more columns in a table is of the
R POSIXct date-time type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

col_is_posix(
x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

66 col_is_posix

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

col_is_posix 67

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)

– MySQL tables (with RMySQL::MySQL())

– Microsoft SQL Server tables (via odbc)

– BigQuery tables (using bigrquery::bigquery())

– DuckDB tables (through duckdb::duckdb())

– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

68 col_is_posix

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_posix() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_posix() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_posix(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_posix()` step.",
active = FALSE

)

YAML representation:

col_is_posix 69

steps:
- col_is_posix:

columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_is_posix()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has a date_time column. The following examples will
validate that that column is of the POSIXct and POSIXt classes.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column date_time is indeed a date-time column.

agent <-
create_agent(tbl = small_table) %>%
col_is_posix(columns = date_time) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

70 col_is_posix

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_posix(columns = date_time) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_posix(small_table, columns = date_time)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_posix(columns = date_time)
#> [1] TRUE

Function ID

2-27

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_schema 71

col_schema Generate a table column schema manually or with a reference table

Description

A table column schema object, as can be created by col_schema(), is necessary when using
the col_schema_match() validation function (which checks whether the table object under study
matches a known column schema). The col_schema object can be made by carefully supplying
the column names and their types as a set of named arguments, or, we could provide a table object,
which could be of the data.frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional
option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate
the schema based on R column types (e.g., "numeric", "character", etc.), SQL column types
(e.g., "double", "varchar", etc.), or Spark SQL column types ("DoubleType", "StringType",
etc.). This is great if we want to validate table column schemas both on the server side and when
tabular data is collected and loaded into R.

Usage

col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))

Arguments

... Column-by-column schema definition
<multiple expressions> // required (or, use .tbl)
A set of named arguments where the names refer to column names and the values
are one or more column types.

.tbl A data table for defining a schema
obj:<tbl_*> // optional
An option to use a table object to define the schema. If this is provided then
any values provided to ... will be ignored. This can either be a table object,
a table-prep formula.This can be a table object such as a data frame, a tibble,
a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula
(~ <tbl reading code>) or a function (function() <tbl reading code>)
can be used to lazily read in the table at interrogation time.

.db_col_types Use R column types or database column types?
singl-kw:[r|sql] // default: "r"
Determines whether the column types refer to R column types ("r") or SQL
column types ("sql").

Examples

Create a simple table with two columns: one integer and the other character.

tbl <-
dplyr::tibble(
a = 1:5,

72 col_schema

b = letters[1:5]
)

tbl
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e

Create a column schema object that describes the columns and their types (in the expected order).

schema_obj <-
col_schema(
a = "integer",
b = "character"

)

schema_obj
#> $a
#> [1] "integer"
#>
#> $b
#> [1] "character"
#>
#> attr(,"class")
#> [1] "r_type" "col_schema"

Validate that the schema object schema_obj exactly defines the column names and column types of
the tbl table.

agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if this validation step passed by using all_passed().

all_passed(agent)

[1] TRUE

We can alternatively create a column schema object from a tbl_df object.

col_schema_match 73

schema_obj <-
col_schema(
.tbl = dplyr::tibble(
a = integer(0),
b = character(0)

)
)

This should provide the same interrogation results as in the previous example.

create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate() %>%
all_passed()

[1] TRUE

Function ID

13-1

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), from_github(), has_columns(),
stop_if_not()

col_schema_match Do columns in the table (and their types) match a predefined schema?

Description

The col_schema_match() validation function, the expect_col_schema_match() expectation func-
tion, and the test_col_schema_match() test function all work in conjunction with a col_schema
object (generated through the col_schema() function) to determine whether the expected schema
matches that of the target table. The validation function can be used directly on a data table or with
an agent object (technically, a ptblank_agent object) whereas the expectation and test functions
can only be used with a data table.

The validation step or expectation operates over a single test unit, which is whether the schema
matches that of the table (within the constraints enforced by the complete, in_order, and is_exact
options). If the target table is a tbl_dbi or a tbl_spark object, we can choose to validate the col-
umn schema that is based on R column types (e.g., "numeric", "character", etc.), SQL column
types (e.g., "double", "varchar", etc.), or Spark SQL types (e.g,. "DoubleType", "StringType",
etc.). That option is defined in the col_schema() function (it is the .db_col_types argument).

There are options to make schema checking less stringent (by default, this validation operates with
highest level of strictness). With the complete option set to FALSE, we can supply a col_schema
object with a partial inclusion of columns. Using in_order set to FALSE means that there is no
requirement for the columns defined in the schema object to be in the same order as in the target
table. Finally, the is_exact option set to FALSE means that all column classes/types don’t have to
be provided for a particular column. It can even be NULL, skipping the check of the column type.

74 col_schema_match

Usage

col_schema_match(
x,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_schema_match(
object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1

)

test_col_schema_match(
object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

schema The table schema
obj:<col_schema> // required
A table schema of type col_schema which can be generated using the col_schema()
function.

complete Requirement for columns specified to exist
scalar<logical> // default: TRUE

A requirement to account for all table columns in the provided schema. By
default, this is TRUE and so that all column names in the target table must be

col_schema_match 75

present in the schema object. This restriction can be relaxed by using FALSE,
where we can provide a subset of table columns in the schema.

in_order Requirement for columns in a specific order
scalar<logical> // default: TRUE
A stringent requirement for enforcing the order of columns in the provided
schema. By default, this is TRUE and the order of columns in both the schema and
the target table must match. By setting to FALSE, this strict order requirement is
removed.

is_exact Requirement for column types to be exactly specified
scalar<logical> // default: TRUE
Determines whether the check for column types should be exact or even per-
formed at all. For example, columns in R data frames may have multiple classes
(e.g., a date-time column can have both the "POSIXct" and the "POSIXt" classes).
If using is_exact == FALSE, the column type in the user-defined schema for a
date-time value can be set as either "POSIXct" or "POSIXt" and pass validation
(with this column, at least). This can be taken a step further and using NULL
for a column type in the user-defined schema will skip the validation check of a
column type. By default, is_exact is set to TRUE.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the

76 col_schema_match

preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)

col_schema_match 77

– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_schema_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_schema_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_schema_match(
schema = col_schema(
a = "integer",
b = "character"

78 col_schema_match

),
complete = FALSE,
in_order = FALSE,
is_exact = FALSE,
actions = action_levels(stop_at = 1),
label = "The `col_schema_match()` step.",
active = FALSE

)

YAML representation:

steps:
- col_schema_match:

schema:
a: integer
b: character

complete: false
in_order: false
is_exact: false
actions:
stop_count: 1.0

label: The `col_schema_match()` step.
active: false

In practice, both of these will often be shorter as only the schema argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with two columns: one integer (a) and the other
character (b). The following examples will validate that the table columns abides match a schema
object as created by col_schema().

tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5]

)

tbl
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b

col_schema_match 79

#> 3 3 c
#> 4 4 d
#> 5 5 e

Create a column schema object with the helper function col_schema() that describes the columns
and their types (in the expected order).

schema_obj <-
col_schema(
a = "integer",
b = "character"

)

schema_obj
#> $a
#> [1] "integer"
#>
#> $b
#> [1] "character"
#>
#> attr(,"class")
#> [1] "r_type" "col_schema"

A: Using an agent with validation functions and then interrogate():
Validate that the schema object schema_obj exactly defines the column names and column types.
We’ll determine if this validation has a failing test unit (there is a single test unit governed by
whether there is a match).

agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema = schema_obj) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_schema_match(schema = schema_obj)
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e

80 col_vals_between

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_schema_match(tbl, scheam = schema_obj)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_schema_match(schema = schema_obj)
#> [1] TRUE

Function ID

2-30

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_between Do column data lie between two specified values or data in other
columns?

Description

The col_vals_between() validation function, the expect_col_vals_between() expectation func-
tion, and the test_col_vals_between() test function all check whether column values in a table
fall within a range. The range specified with three arguments: left, right, and inclusive. The
left and right values specify the lower and upper bounds. The bounds can be specified as single,
literal values or as column names given in vars(). The inclusive argument, as a vector of two log-
ical values relating to left and right, states whether each bound is inclusive or not. The default is
c(TRUE, TRUE), where both endpoints are inclusive (i.e., [left, right]). For partially-unbounded
versions of this function, we can use the col_vals_lt(), col_vals_lte(), col_vals_gt(), or
col_vals_gte() validation functions. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

col_vals_between 81

Usage

col_vals_between(
x,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required

82 col_vals_between

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

left Definition of left bound
<value expression> // required
The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

right Definition of right bound
<value expression> // required
The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

inclusive Inclusiveness of bounds
vector<logical> // default: c(TRUE, TRUE)

A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying

col_vals_between 83

a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

84 col_vals_between

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

col_vals_between 85

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

86 col_vals_between

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_between() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_between() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_between(
columns = a,
left = 1,
right = 2,
inclusive = c(TRUE, FALSE),
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_between()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_between:

columns: c(a)
left: 1.0
right: 2.0
inclusive:
- true

col_vals_between 87

- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_between()` step.
active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a column of numeric values in c (there are a few NAs
in that column). The following examples will validate the values in that numeric column.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that values in column c are all between 1 and 9. Because there are NA values, we’ll choose
to let those pass validation by setting na_pass = TRUE.

agent <-
create_agent(tbl = small_table) %>%
col_vals_between(
columns = c,
left = 1, right = 9,
na_pass = TRUE

88 col_vals_between

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_between(
columns = c,
left = 1, right = 9,
na_pass = TRUE

) %>%
dplyr::pull(c)

#> [1] 3 8 3 NA 7 4 3 2 9 9 7 8 NA

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_between(
small_table, columns = c,
left = 1, right = 9,
na_pass = TRUE

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_between(
columns = c,
left = 1, right = 9,
na_pass = TRUE

)
#> [1] TRUE

An additional note on the bounds for this function: they are inclusive by default (i.e., values of
exactly 1 and 9 will pass). We can modify the inclusiveness of the upper and lower bounds with
the inclusive option, which is a length-2 logical vector.
Testing with the upper bound being non-inclusive, we get FALSE since two values are 9 and they
now fall outside of the upper (or right) bound.

small_table %>%
test_col_vals_between(
columns = c, left = 1, right = 9,

col_vals_decreasing 89

inclusive = c(TRUE, FALSE),
na_pass = TRUE

)
#> [1] FALSE

Function ID

2-7

See Also

The analogue to this function: col_vals_not_between().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_decreasing Are column data decreasing by row?

Description

The col_vals_decreasing() validation function, the expect_col_vals_decreasing() expec-
tation function, and the test_col_vals_decreasing() test function all check whether column
values in a table are decreasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing increasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_decreasing(
x,
columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,

90 col_vals_decreasing

step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_decreasing(
object,
columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_decreasing(
object,
columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

allow_stationary

Allowance for stationary pauses in values
scalar<logical> // default: FALSE
An option to allow pauses in decreasing values. For example if the values
for the test units are [85, 82, 82, 80, 77] then the third unit (82, ap-
pearing a second time) would be marked with fail when allow_stationary
is FALSE. Using allow_stationary = TRUE will result in all the test units in
[85, 82, 82, 80, 77] to be marked with pass.

increasing_tol Optional tolerance threshold for backtracking
scalar<numeric>(val>=0) // default: NULL (optional)

col_vals_decreasing 91

An optional threshold value that allows for movement of numerical values in
the positive direction. By default this is NULL but using a numerical value with
set the absolute threshold of positive travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

92 col_vals_decreasing

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

col_vals_decreasing 93

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column

94 col_vals_decreasing

names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want

col_vals_decreasing 95

to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_decreasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_decreasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_decreasing(
columns = a,
allow_stationary = TRUE,
increasing_tol = 0.5,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_decreasing()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_decreasing:

columns: c(a)
allow_stationary: true
increasing_tol: 0.5
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_decreasing()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

96 col_vals_decreasing

Examples

The game_revenue dataset in the package has the column session_start, which contains date-
time values. Let’s create a column of difftime values (in time_left) that describes the time re-
maining in the month relative to the session start.

game_revenue_2 <-
game_revenue %>%
dplyr::mutate(
time_left =
lubridate::ymd_hms(
"2015-02-01 00:00:00"

) - session_start
)

game_revenue_2
#> # A tibble: 2,000 x 12
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 11:55:20 ad
#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad
#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad
#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad
#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad
#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2015-01-01 15:17:18 2015-01-01 15:19:36 ad
#> # i 1,990 more rows
#> # i 7 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>,
#> # time_left <drtn>

Let’s ensure that the "difftime" values in the new time_left column has values that are decreas-
ing from top to bottom.

A: Using an agent with validation functions and then interrogate():
Validate that all "difftime" values in the column time_left are decreasing, and, allow for
repeating values (allow_stationary will be set to TRUE).

agent <-
create_agent(tbl = game_revenue_2) %>%
col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE

) %>%
interrogate()

col_vals_decreasing 97

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

game_revenue_2 %>%
col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE

) %>%
dplyr::select(time_left) %>%
dplyr::distinct() %>%
dplyr::count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 618

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_decreasing(
game_revenue_2,
columns = time_left,
allow_stationary = TRUE

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

game_revenue_2 %>%
test_col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE

)
#> [1] TRUE

Function ID

2-14

See Also

The analogous function that moves in the opposite direction: col_vals_increasing().

98 col_vals_equal

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_equal Are column data equal to a fixed value or data in another column?

Description

The col_vals_equal() validation function, the expect_col_vals_equal() expectation function,
and the test_col_vals_equal() test function all check whether column values in a table are equal
to a specified value. The value can be specified as a single, literal value or as a column name given
in vars(). The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. Each validation step or expectation will operate over the number of test units that
is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_equal(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

col_vals_equal 99

test_col_vals_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this test of equality. This can be a single value or a compatible
column given in vars(). Any column values equal to what is specified here will
pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)

100 col_vals_equal

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

col_vals_equal 101

scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

102 col_vals_equal

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

col_vals_equal 103

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_equal() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_equal() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_equal(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_equal()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_equal:

columns: c(a)

104 col_vals_equal

value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_equal()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 A A A
#> 2 5 1 1 B B B
#> 3 5 1 1 C C C
#> 4 5 2 2 E D D
#> 5 5 2 2 F E E
#> 6 5 2 2 G F F

A: Using an agent with validation functions and then interrogate():
Validate that values in column a are all equal to the value of 5. We’ll determine if this validation
has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_equal(columns = a, value = 5) %>%
interrogate()

col_vals_equal 105

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_equal(columns = a, value = 5) %>%
dplyr::pull(a)

#> [1] 5 5 5 5 5 5

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_equal(tbl, columns = a, value = 5)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_equal(tbl, columns = a, value = 5)
#> [1] TRUE

Function ID

2-3

See Also

The analogue to this function: col_vals_not_equal().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_expr(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

106 col_vals_expr

col_vals_expr Do column data agree with a predicate expression?

Description

The col_vals_expr() validation function, the expect_col_vals_expr() expectation function,
and the test_col_vals_expr() test function all check whether column values in a table agree
with a user-defined predicate expression. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

col_vals_expr(
x,
expr,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

expr Predicate expression
<predicate expression> // required
A predicate expression to use for this validation. This can either be in the form
of a call made with the expr() function or as a one-sided R formula (using a
leading ~).

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a

col_vals_expr 107

leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

108 col_vals_expr

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

col_vals_expr 109

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

110 col_vals_expr

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_expr() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_expr() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_expr(
expr = ~ a %% 1 == 0,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_expr()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_expr:

expr: ~a%%1 == 0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")

col_vals_expr 111

actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_expr()` step.
active: false

In practice, both of these will often be shorter as only the expr argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a = c(1, 2, 1, 7, 8, 6),
b = c(0, 0, 0, 1, 1, 1),
c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),

)

tbl
#> # A tibble: 6 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 1 0 0.5
#> 2 2 0 0.3
#> 3 1 0 0.8
#> 4 7 1 1.4
#> 5 8 1 1.9
#> 6 6 1 1.2

A: Using an agent with validation functions and then interrogate():
Validate that values in column a are integer-like by using the R modulo operator and expecting
0. We’ll determine if this validation has any failing test units (there are 6 test units, one for each
row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_expr(expr = expr(a %% 1 == 0)) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

112 col_vals_expr

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_expr(expr = expr(a %% 1 == 0)) %>%
dplyr::pull(a)

#> [1] 1 2 1 7 8 6

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_expr(tbl, expr = ~ a %% 1 == 0)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
#> [1] TRUE

Variations:
We can do more complex things by taking advantage of the case_when() and between() func-
tions (available for use in the pointblank package).

tbl %>%
test_col_vals_expr(expr = ~ case_when(
b == 0 ~ a %>% between(0, 5) & c < 1,
b == 1 ~ a > 5 & c >= 1

))
#> [1] TRUE

If you only want to test a subset of rows, then the case_when() statement doesn’t need to be
exhaustive. Any rows that don’t fall into the cases will be pruned (giving us less test units overall).

tbl %>%
test_col_vals_expr(expr = ~ case_when(
b == 1 ~ a > 5 & c >= 1

))
#> [1] TRUE

Function ID

2-19

col_vals_gt 113

See Also

These reexported functions (from rlang and dplyr) work nicely within col_vals_expr() and its
variants: rlang::expr(), dplyr::between(), and dplyr::case_when().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_gt Are column data greater than a fixed value or data in another column?

Description

The col_vals_gt() validation function, the expect_col_vals_gt() expectation function, and the
test_col_vals_gt() test function all check whether column values in a table are greater than a
specified value (the exact comparison used in this function is col_val > value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_gt(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_gt(
object,
columns,
value,

114 col_vals_gt

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_gt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than what is specified here
will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds

col_vals_gt 115

a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests

116 col_vals_gt

obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

col_vals_gt 117

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()

118 col_vals_gt

function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gt() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gt() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_gt(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_gt()` step.",
active = FALSE

col_vals_gt 119

)

YAML representation:

steps:
- col_vals_gt:

columns: c(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_gt()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

120 col_vals_gt

A: Using an agent with validation functions and then interrogate():
Validate that values in column a are all greater than the value of 4. We’ll determine if this valida-
tion had any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(columns = a, value = 4) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_vals_gt(columns = a, value = 4)
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_gt(tbl, columns = a, value = 4)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_gt(tbl, columns = a, value = 4)
#> [1] TRUE

Function ID

2-6

See Also

The analogous function with a left-closed bound: col_vals_gte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),

col_vals_gte 121

col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_gte Are column data greater than or equal to a fixed value or data in an-
other column?

Description

The col_vals_gte() validation function, the expect_col_vals_gte() expectation function, and
the test_col_vals_gte() test function all check whether column values in a table are greater than
or equal to a specified value (the exact comparison used in this function is col_val >= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gte(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_gte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

122 col_vals_gte

test_col_vals_gte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than or equal to what is
specified here will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)

col_vals_gte 123

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

124 col_vals_gte

scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

col_vals_gte 125

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

126 col_vals_gte

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gte() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_gte(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_gte()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_gte:

columns: c(a)

col_vals_gte 127

value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_gte()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(

a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():
Validate that values in column a are all greater than or equal to the value of 5. We’ll determine if
this validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_gte(columns = a, value = 5) %>%
interrogate()

128 col_vals_gte

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_vals_gte(columns = a, value = 5)
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_gte(tbl, columns = a, value = 5)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_gte(tbl, columns = a, value = 5)
#> [1] TRUE

Function ID

2-5

See Also

The analogous function with a left-open bound: col_vals_gt().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_increasing 129

col_vals_increasing Are column data increasing by row?

Description

The col_vals_increasing() validation function, the expect_col_vals_increasing() expec-
tation function, and the test_col_vals_increasing() test function all check whether column
values in a table are increasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing decreasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_increasing(
x,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_increasing(
object,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_increasing(
object,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,

130 col_vals_increasing

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

allow_stationary

Allowance for stationary pauses in values
scalar<logical> // default: FALSE
An option to allow pauses in decreasing values. For example if the values
for the test units are [80, 82, 82, 85, 88] then the third unit (82, ap-
pearing a second time) would be marked with fail when allow_stationary
is FALSE. Using allow_stationary = TRUE will result in all the test units in
[80, 82, 82, 85, 88] to be marked with pass.

decreasing_tol Optional tolerance threshold for backtracking
scalar<numeric>(val>=0) // default: NULL (optional)
An optional threshold value that allows for movement of numerical values in
the negative direction. By default this is NULL but using a numerical value with
set the absolute threshold of negative travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two

col_vals_increasing 131

ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

132 col_vals_increasing

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

col_vals_increasing 133

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()

134 col_vals_increasing

function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_increasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_increasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_increasing(
columns = a,
allow_stationary = TRUE,
decreasing_tol = 0.5,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_increasing()` step.",

col_vals_increasing 135

active = FALSE
)

YAML representation:

steps:
- col_vals_increasing:

columns: c(a)
allow_stationary: true
decreasing_tol: 0.5
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_increasing()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The game_revenue dataset in the package has the column session_start, which contains date-
time values. Let’s ensure that this column has values that are increasing from top to bottom.

game_revenue
#> # A tibble: 2,000 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 11:55:20 ad
#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad
#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad
#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad
#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad
#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2015-01-01 15:17:18 2015-01-01 15:19:36 ad
#> # i 1,990 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>

136 col_vals_increasing

A: Using an agent with validation functions and then interrogate():
Validate that all date-time values in the column session_start are increasing, and, allow for
repeating values (allow_stationary will be set to TRUE). We’ll determine if this validation has
any failing test units (there are 2000 test units).

agent <-
create_agent(tbl = game_revenue) %>%
col_vals_increasing(
columns = session_start,
allow_stationary = TRUE

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

game_revenue %>%
col_vals_increasing(
columns = session_start,
allow_stationary = TRUE

) %>%
dplyr::select(session_start) %>%
dplyr::distinct() %>%
dplyr::count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 618

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_increasing(
game_revenue,
columns = session_start,
allow_stationary = TRUE

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

game_revenue %>%
test_col_vals_increasing(

col_vals_in_set 137

columns = session_start,
allow_stationary = TRUE

)
#> [1] TRUE

Function ID

2-13

See Also

The analogous function that moves in the opposite direction: col_vals_decreasing().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_lt(), col_vals_lte(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

col_vals_in_set Are column data part of a specified set of values?

Description

The col_vals_in_set() validation function, the expect_col_vals_in_set() expectation func-
tion, and the test_col_vals_in_set() test function all check whether column values in a table
are part of a specified set of values. The validation function can be used directly on a data table or
with an agent object (technically, a ptblank_agent object) whereas the expectation and test func-
tions can only be used with a data table. Each validation step or expectation will operate over the
number of test units that is equal to the number of rows in the table (after any preconditions have
been applied).

Usage

col_vals_in_set(
x,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

138 col_vals_in_set

expect_col_vals_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values
vector<integer|numeric|character> // required
A vector of numeric or string-based elements, where column values found within
this set will be considered as passing.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

col_vals_in_set 139

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

140 col_vals_in_set

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

col_vals_in_set 141

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

142 col_vals_in_set

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_in_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_in_set() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_in_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_in_set()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_in_set:

columns: c(a)
set:
- 1.0
- 2.0
- 3.0
- 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")

col_vals_in_set 143

actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_in_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are part of a
given set.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that values in column f are all part of the set of values containing low, mid, and high.
We’ll determine if this validation has any failing test units (there are 13 test units, one for each
row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_in_set(
columns = f, set = c("low", "mid", "high")

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

144 col_vals_in_set

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_in_set(
columns = f, set = c("low", "mid", "high")

) %>%
dplyr::pull(f) %>%
unique()

#> [1] "high" "low" "mid"

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_in_set(
small_table,
columns = f, set = c("low", "mid", "high")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_in_set(
columns = f, set = c("low", "mid", "high")

)
#> [1] TRUE

Function ID

2-9

See Also

The analogue to this function: col_vals_not_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_increasing(), col_vals_lt(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_lt 145

col_vals_lt Are column data less than a fixed value or data in another column?

Description

The col_vals_lt() validation function, the expect_col_vals_lt() expectation function, and
the test_col_vals_lt() test function all check whether column values in a table are less than a
specified value (the exact comparison used in this function is col_val < value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_lt(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_lt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_lt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

146 col_vals_lt

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values less than what is specified here
will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step

col_vals_lt 147

index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

148 col_vals_lt

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

col_vals_lt 149

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

150 col_vals_lt

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_lt() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_lt() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_lt(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_lt()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_lt:

columns: c(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1

col_vals_lt 151

stop_fraction: 0.2
label: The `col_vals_lt()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(

a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():
Validate that values in column c are all less than the value of 5. We’ll determine if this validation
has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_lt(columns = c, value = 5) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

152 col_vals_lte

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_lt(columns = c, value = 5) %>%
dplyr::pull(c)

#> [1] 1 1 1 2 3 4

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_lt(tbl, columns = c, value = 5)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_lt(tbl, columns = c, value = 5)
#> [1] TRUE

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_lte Are column data less than or equal to a fixed value or data in another
column?

col_vals_lte 153

Description

The col_vals_lte() validation function, the expect_col_vals_lte() expectation function, and
the test_col_vals_lte() test function all check whether column values in a table are less than
or equal to a specified value (the exact comparison used in this function is col_val <= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_lte(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_lte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_lte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required

154 col_vals_lte

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this comparison. This can be a single value or a compatible col-
umn given in vars(). Any column values less than or equal to what is specified
here will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)

col_vals_lte 155

be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly

156 col_vals_lte

returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)
• Spark DataFrames (tbl_spark)
• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

col_vals_lte 157

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

158 col_vals_lte

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_lte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_lte() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_lte(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_lte()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_lte:

columns: c(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_lte()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

col_vals_lte 159

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(

a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():
Validate that values in column c are all less than or equal to the value of 4. We’ll determine if this
validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_lte(columns = c, value = 4) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_lte(columns = c, value = 4) %>%
dplyr::pull(c)

#> [1] 1 1 1 2 3 4

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

160 col_vals_make_set

expect_col_vals_lte(tbl, columns = c, value = 4)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_lte(tbl, columns = c, value = 4)
#> [1] TRUE

Function ID

2-2

See Also

The analogous function with a right-open bound: col_vals_lt().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_make_set Is a set of values entirely accounted for in a column of values?

Description

The col_vals_make_set() validation function, the expect_col_vals_make_set() expectation
function, and the test_col_vals_make_set() test function all check whether set values are all
seen at least once in a table column. A necessary criterion here is that no additional values (outside
those definied in the set) should be seen (this requirement is relaxed in the col_vals_make_subset()
validation function and in its expectation and test variants). The validation function can be used di-
rectly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expecta-
tion will operate over the number of test units that is equal to the number of elements in the set
plus a test unit reserved for detecting column values outside of the set (any outside value seen will
make this additional test unit fail).

Usage

col_vals_make_set(
x,
columns,
set,
preconditions = NULL,

col_vals_make_set 161

segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_make_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_make_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values
vector<integer|numeric|character> // required
A vector of elements that is expected to be equal to the set of unique values in
the target column.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table

162 col_vals_make_set

<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

col_vals_make_set 163

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

164 col_vals_make_set

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using

col_vals_make_set 165

the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_make_set() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_make_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_make_set()` step.",
active = FALSE

)

YAML representation:

166 col_vals_make_set

steps:
- col_vals_make_set:

columns: c(a)
set:
- 1.0
- 2.0
- 3.0
- 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_make_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are part of a
given set.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that values in column f comprise the values of low, mid, and high, and, no other values.
We’ll determine if this validation has any failing test units (there are 4 test units).

col_vals_make_set 167

agent <-
create_agent(tbl = small_table) %>%
col_vals_make_set(
columns = f, set = c("low", "mid", "high")

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_make_set(
columns = f, set = c("low", "mid", "high")

) %>%
dplyr::pull(f) %>%
unique()

#> [1] "high" "low" "mid"

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_make_set(
small_table,
columns = f, set = c("low", "mid", "high")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_make_set(
columns = f, set = c("low", "mid", "high")

)
#> [1] TRUE

Function ID

2-11

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),

168 col_vals_make_subset

col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_make_subset Is a set of values a subset of a column of values?

Description

The col_vals_make_subset() validation function, the expect_col_vals_make_subset() ex-
pectation function, and the test_col_vals_make_subset() test function all check whether all
set values are seen at least once in a table column. The validation function can be used directly
on a data table or with an agent object (technically, a ptblank_agent object) whereas the expecta-
tion and test functions can only be used with a data table. Each validation step or expectation will
operate over the number of test units that is equal to the number of elements in the set.

Usage

col_vals_make_subset(
x,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_make_subset(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_make_subset(
object,
columns,
set,
preconditions = NULL,

col_vals_make_subset 169

threshold = 1
)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values
vector<integer|numeric|character> // required
A vector of elements that is expected to be a subset of the unique values in the
target column.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation

170 col_vals_make_subset

function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly

col_vals_make_subset 171

returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)

– MySQL tables (with RMySQL::MySQL())

– Microsoft SQL Server tables (via odbc)

– BigQuery tables (using bigrquery::bigquery())

– DuckDB tables (through duckdb::duckdb())

– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

172 col_vals_make_subset

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

col_vals_make_subset 173

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_subset() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_make_subset() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_make_subset(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_make_subset()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_make_subset:

columns: c(a)
set:
- 1.0
- 2.0
- 3.0
- 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_make_subset()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It

174 col_vals_make_subset

is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are part of a
given set.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the distinct set of values in column f contains at least the subset defined as low
and high (the column actually has both of those and some mid values). We’ll determine if this
validation has any failing test units (there are 2 test units, one per element in the set).

agent <-
create_agent(tbl = small_table) %>%
col_vals_make_subset(
columns = f, set = c("low", "high")

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_make_subset(
columns = f, set = c("low", "high")

col_vals_not_between 175

) %>%
dplyr::pull(f) %>%
unique()

#> [1] "high" "low" "mid"

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_make_subset(
small_table,
columns = f, set = c("low", "high")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_make_subset(
columns = f, set = c("low", "high")

)
#> [1] TRUE

Function ID

2-12

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_not_between Do column data lie outside of two specified values or data in other
columns?

176 col_vals_not_between

Description

The col_vals_not_between() validation function, the expect_col_vals_not_between() ex-
pectation function, and the test_col_vals_not_between() test function all check whether col-
umn values in a table do not fall within a range. The range specified with three arguments:
left, right, and inclusive. The left and right values specify the lower and upper bounds.
The bounds can be specified as single, literal values or as column names given in vars(). The
inclusive argument, as a vector of two logical values relating to left and right, states whether
each bound is inclusive or not. The default is c(TRUE, TRUE), where both endpoints are inclu-
sive (i.e., [left, right]). For partially-unbounded versions of this function, we can use the
col_vals_lt(), col_vals_lte(), col_vals_gt(), or col_vals_gte() validation functions. The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_between(
x,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_between(
object,
columns,
left,

col_vals_not_between 177

right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

left Definition of left bound
<value expression> // required
The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

right Definition of right bound
<value expression> // required
The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

inclusive Inclusiveness of bounds
vector<logical> // default: c(TRUE, TRUE)

A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)

178 col_vals_not_between

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

col_vals_not_between 179

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

180 col_vals_not_between

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

col_vals_not_between 181

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_between() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_between() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_between(
columns = a,
left = 1,
right = 2,
inclusive = c(TRUE, FALSE),

182 col_vals_not_between

na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_not_between()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_not_between:

columns: c(a)
left: 1.0
right: 2.0
inclusive:
- true
- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_not_between()` step.
active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a column of numeric values in c (there are a few NAs
in that column). The following examples will validate the values in that numeric column.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid

col_vals_not_between 183

#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that values in column c are all between 10 and 20. Because there are NA values, we’ll
choose to let those pass validation by setting na_pass = TRUE. We’ll determine if this validation
has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_not_between(
columns = c,
left = 10, right = 20,
na_pass = TRUE

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_not_between(
columns = c,
left = 10, right = 20,
na_pass = TRUE

) %>%
dplyr::pull(c)

#> [1] 3 8 3 NA 7 4 3 2 9 9 7 8 NA

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_between(
small_table, columns = c,
left = 10, right = 20,
na_pass = TRUE

)

184 col_vals_not_between

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_not_between(
columns = c,
left = 10, right = 20,
na_pass = TRUE

)
#> [1] TRUE

An additional note on the bounds for this function: they are inclusive by default. We can modify
the inclusiveness of the upper and lower bounds with the inclusive option, which is a length-2
logical vector.

In changing the lower bound to be 9 and making it non-inclusive, we get TRUE since although two
values are 9 and they fall outside of the lower (or left) bound (and any values ’not between’ count
as passing test units).

small_table %>%
test_col_vals_not_between(
columns = c,
left = 9, right = 20,
inclusive = c(FALSE, TRUE),
na_pass = TRUE

)
#> [1] TRUE

Function ID

2-8

See Also

The analogue to this function: col_vals_between().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_not_equal 185

col_vals_not_equal Are column data not equal to a fixed value or data in another column?

Description

The col_vals_not_equal() validation function, the expect_col_vals_not_equal() expecta-
tion function, and the test_col_vals_not_equal() test function all check whether column values
in a table are not equal to a specified value. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

col_vals_not_equal(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

186 col_vals_not_equal

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression> // required
A value used for this test of inequality. This can be a single value or a compatible
column given in vars(). Any column values not equal to what is specified here
will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step

col_vals_not_equal 187

index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

188 col_vals_not_equal

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

col_vals_not_equal 189

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

190 col_vals_not_equal

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_equal() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_equal() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_equal(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_not_equal()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_not_equal:

columns: c(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1

col_vals_not_equal 191

stop_fraction: 0.2
label: The `col_vals_not_equal()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]

)

tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 A A A
#> 2 5 1 1 B B B
#> 3 5 1 1 C C C
#> 4 5 2 2 E D D
#> 5 5 2 2 F E E
#> 6 5 2 2 G F F

A: Using an agent with validation functions and then interrogate():
Validate that values in column a are all not equal to the value of 6. We’ll determine if this
validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_not_equal(columns = a, value = 6) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

192 col_vals_not_in_set

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_not_equal(columns = a, value = 6) %>%
dplyr::pull(a)

#> [1] 5 5 5 5 5 5

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_equal(tbl, columns = a, value = 6)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_not_equal(tbl, columns = a, value = 6)
#> [1] TRUE

Function ID

2-4

See Also

The analogue to this function: col_vals_equal().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_not_in_set Are data not part of a specified set of values?

Description

The col_vals_not_in_set() validation function, the expect_col_vals_not_in_set() expec-
tation function, and the test_col_vals_not_in_set() test function all check whether column
values in a table are not part of a specified set of values. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expecta-
tion will operate over the number of test units that is equal to the number of rows in the table (after
any preconditions have been applied).

col_vals_not_in_set 193

Usage

col_vals_not_in_set(
x,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values
vector<integer|numeric|character> // required
A vector of numeric or string-based elements, where column values found within
this set will be considered as failing.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)

194 col_vals_not_in_set

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation

col_vals_not_in_set 195

step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

196 col_vals_not_in_set

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

col_vals_not_in_set 197

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_in_set() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_in_set() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_in_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),

198 col_vals_not_in_set

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_not_in_set()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_not_in_set:

columns: c(a)
set:
- 1.0
- 2.0
- 3.0
- 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_not_in_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are not part of
a given set.

A: Using an agent with validation functions and then interrogate():
Validate that values in column f contain none of the values lows, mids, and highs. We’ll deter-
mine if this validation has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_not_in_set(
columns = f, set = c("lows", "mids", "highs")

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

col_vals_not_in_set 199

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_not_in_set(
columns = f, set = c("lows", "mids", "highs")

) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_in_set(
small_table,
columns = f, set = c("lows", "mids", "highs")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_not_in_set(
columns = f, set = c("lows", "mids", "highs")

)
#> [1] TRUE

Function ID

2-10

See Also

The analogue to this function: col_vals_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

200 col_vals_not_null

col_vals_not_null Are column data not NULL/NA?

Description

The col_vals_not_null() validation function, the expect_col_vals_not_null() expectation
function, and the test_col_vals_not_null() test function all check whether column values in
a table are not NA values or, in the database context, not NULL values. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_not_null(
x,
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a

col_vals_not_null 201

leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

202 col_vals_not_null

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

col_vals_not_null 203

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

204 col_vals_not_null

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_null() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_null() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),

col_vals_not_null 205

label = "The `col_vals_not_null()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_not_null:

columns: c(a)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_not_null()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8),
b = c(7, 1, 0, 0, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)

)

tbl
#> # A tibble: 5 x 4
#> a b c d
#> <dbl> <dbl> <lgl> <dbl>
#> 1 5 7 NA 35
#> 2 7 1 NA 23
#> 3 6 0 NA NA
#> 4 5 0 NA NA
#> 5 8 0 NA NA

A: Using an agent with validation functions and then interrogate():
Validate that all values in column b are not NA (they would be non-NULL in a database context,
which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5
test units, one for each row).

206 col_vals_not_null

agent <-
create_agent(tbl = tbl) %>%
col_vals_not_null(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_not_null(columns = b) %>%
dplyr::pull(b)

#> [1] 7 1 0 0 0

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_null(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_vals_not_null(columns = b)
#> [1] TRUE

Function ID

2-16

See Also

The analogue to this function: col_vals_null().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

col_vals_null 207

col_vals_null Are column data NULL/NA?

Description

The col_vals_null() validation function, the expect_col_vals_null() expectation function,
and the test_col_vals_null() test function all check whether column values in a table are NA
values or, in the database context, NULL values. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_null(
x,
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a

208 col_vals_null

leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

col_vals_null 209

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

210 col_vals_null

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

col_vals_null 211

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_null() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_null() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),

212 col_vals_null

label = "The `col_vals_null()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_null:

columns: c(a)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_null()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8),
b = c(7, 1, 0, 0, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)

)

tbl
#> # A tibble: 5 x 4
#> a b c d
#> <dbl> <dbl> <lgl> <dbl>
#> 1 5 7 NA 35
#> 2 7 1 NA 23
#> 3 6 0 NA NA
#> 4 5 0 NA NA
#> 5 8 0 NA NA

A: Using an agent with validation functions and then interrogate():
Validate that all values in column c are NA (they would be NULL in a database context, which isn’t
the case here). We’ll determine if this validation has any failing test units (there are 5 test units,
one for each row).

col_vals_null 213

agent <-
create_agent(tbl = tbl) %>%
col_vals_null(columns = c) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_null(columns = c) %>%
dplyr::pull(c)

#> [1] NA NA NA NA NA

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_null(tbl, columns = c)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_vals_null(columns = c)
#> [1] TRUE

Function ID

2-15

See Also

The analogue to this function: col_vals_not_null().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_regex(),
col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()

214 col_vals_regex

col_vals_regex Do strings in column data match a regex pattern?

Description

The col_vals_regex() validation function, the expect_col_vals_regex() expectation function,
and the test_col_vals_regex() test function all check whether column values in a table corre-
spond to a regex matching expression. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

col_vals_regex(
x,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_regex(
object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_regex(
object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

col_vals_regex 215

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

regex Regex pattern
scalar<character> // required
A regular expression pattern to test for a match to the target column. Any regex
matches to values in the target columns will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number

216 col_vals_regex

of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

col_vals_regex 217

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

218 col_vals_regex

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

col_vals_regex 219

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_regex() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_regex() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_regex(
columns = a,
regex = "[0-9]-[a-z]{3}-[0-9]{3}",
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_regex()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_regex:

columns: c(a)
regex: '[0-9]-[a-z]{3}-[0-9]{3}'
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1

220 col_vals_regex

stop_fraction: 0.2
label: The `col_vals_regex()` step.
active: false

In practice, both of these will often be shorter as only the columns and regex arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a character-based b column with values that adhere to
a very particular pattern. The following examples will validate that that column abides by a regex
pattern.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

This is the regex pattern that will be used throughout:

pattern <- "[0-9]-[a-z]{3}-[0-9]{3}"

A: Using an agent with validation functions and then interrogate():
Validate that all values in column b match the regex pattern. We’ll determine if this validation
has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_regex(columns = b, regex = pattern) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

col_vals_regex 221

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_regex(columns = b, regex = pattern) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_regex(small_table, columns = b, regex = pattern)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_vals_regex(columns = b, regex = pattern)
#> [1] TRUE

Function ID

2-17

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()

222 col_vals_within_spec

col_vals_within_spec Do values in column data fit within a specification?

Description

The col_vals_within_spec() validation function, the expect_col_vals_within_spec() ex-
pectation function, and the test_col_vals_within_spec() test function all check whether col-
umn values in a table correspond to a specification (spec) type (details of which are available in the
Specifications section). The validation function can be used directly on a data table or with an agent
object (technically, a ptblank_agent object) whereas the expectation and test functions can only
be used with a data table. Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_within_spec(
x,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_within_spec(
object,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_within_spec(
object,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

col_vals_within_spec 223

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

spec Specification type
scalar<character> // required
A specification string for defining the specification type. Examples are "email",
"url", and "postal[USA]". All options are explained in the Specifications
section.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step

224 col_vals_within_spec

index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

col_vals_within_spec 225

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Specifications

A specification type must be used with the spec argument. This is a character-based keyword that
corresponds to the type of data in the specified columns. The following keywords can be used:

• "isbn": The International Standard Book Number (ISBN) is a unique numerical identifier
for books, pamphletes, educational kits, microforms, and digital/electronic publications. The
specification has been formalized in ISO 2108. This keyword can be used to validate 10- or
13-digit ISBNs.

• "VIN": A vehicle identification number (VIN) is a unique code (which includes a serial num-
ber) used by the automotive industry to identify individual motor vehicles, motorcycles, scoot-
ers, and mopeds as stipulated by ISO 3779 and ISO 4030.

• "postal_code[<country_code>]": A postal code (also known as postcodes, PIN, or ZIP
codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation)
included in a postal address to aid in sorting mail. Because the coding varies by coun-
try, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3)
formats needs to be supplied along with the keywords (e.g., for postal codes in Germany,
"postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be
used for US ZIP codes.

• "credit_card": A credit card number can be validated and this check works across a large
variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC
7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key
validation performed here is the usage of the Luhn algorithm.

226 col_vals_within_spec

• "iban[<country_code>]": The International Bank Account Number (IBAN) is a system of
identifying bank accounts across different countries for the purpose of improving cross-border
transactions. IBAN values are validated through conversion to integer values and performing
a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding
varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1
alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany,
"iban[DE]" or "iban[DEU]" can be used).

• "swift": Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are
defined in a standard format as described by ISO 9362. These codes are unique identifiers
for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide
Interbank Financial Telecommunication. These numbers are used when transferring money
between banks, especially important for international wire transfers.

• "phone", "email", "url", "ipv4", "ipv6", "mac": Phone numbers, email addresses, Internet
URLs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective
keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

col_vals_within_spec 227

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

228 col_vals_within_spec

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_within_spec() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_within_spec() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_within_spec(
columns = a,
spec = "email",
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(b < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_within_spec()` step.",
active = FALSE

)

YAML representation:

steps:
- col_vals_within_spec:

columns: c(a)
spec: email
na_pass: true
preconditions: ~. %>% dplyr::filter(b < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `col_vals_within_spec()` step.
active: false

In practice, both of these will often be shorter as only the columns and spec arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

col_vals_within_spec 229

Examples

The specifications dataset in the package has columns of character data that correspond to each
of the specifications that can be tested. The following examples will validate that the email_addresses
column has 5 correct values (this is true if we get a subset of the data: the first five rows).

spec_slice <- specifications[1:5,]

spec_slice
#> # A tibble: 5 x 12
#> isbn_numbers vin_numbers zip_codes credit_card_numbers iban_austria
#> <chr> <chr> <chr> <chr> <chr>
#> 1 978 1 85715 201 2 4UZAANDH85CV12329 99553 340000000000009 AT582774098~
#> 2 978-1-84159-362-3 JM1BL1S59A1134659 36264 378734493671000 AT220332087~
#> 3 978 1 84159 329 6 1GCEK14R3WZ274764 71660 6703444444444449 AT328650112~
#> 4 978 1 85715 202 9 2B7JB21Y0XK524370 85225 6703000000000000003 AT193357281~
#> 5 978 1 85715 198 5 4UZAANDH85CV12329 90309 4035501000000008 AT535755326~
#> # i 7 more variables: swift_numbers <chr>, phone_numbers <chr>,
#> # email_addresses <chr>, urls <chr>, ipv4_addresses <chr>,
#> # ipv6_addresses <chr>, mac_addresses <chr>

A: Using an agent with validation functions and then interrogate():
Validate that all values in the column email_addresses are correct. We’ll determine if this
validation has any failing test units (there are 5 test units, one for each row).

agent <-
create_agent(tbl = spec_slice) %>%
col_vals_within_spec(
columns = email_addresses,
spec = "email"

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

spec_slice %>%
col_vals_within_spec(
columns = email_addresses,
spec = "email"

) %>%
dplyr::select(email_addresses)

#> # A tibble: 5 x 1
#> email_addresses

230 col_vals_within_spec

#> <chr>
#> 1 test@test.com
#> 2 mail+mail@example.com
#> 3 mail.email@e.test.com
#> 4 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ@letters-in-local.org
#> 5 01234567890@numbers-in-local.net

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_within_spec(
spec_slice,
columns = email_addresses,
spec = "email"

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

spec_slice %>%
test_col_vals_within_spec(
columns = email_addresses,
spec = "email"

)
#> [1] TRUE

Function ID

2-18

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), conjointly(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()

conjointly 231

conjointly Perform multiple rowwise validations for joint validity

Description

The conjointly() validation function, the expect_conjointly() expectation function, and the
test_conjointly() test function all check whether test units at each index (typically each row) all
pass multiple validations. We can use validation functions that validate row units (the col_vals_*()
series), check for column existence (col_exists()), or validate column type (the col_is_*() se-
ries). Because of the imposed constraint on the allowed validation functions, the ensemble of test
units are either comprised rows of the table (after any common preconditions have been applied)
or are single test units (for those functions that validate columns).

Each of the functions used in a conjointly() validation step (composed using multiple validation
function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass
for the same test units. In practice, an example of a joint validation is testing whether values for
column a are greater than a specific value while adjacent values in column b lie within a specified
range. The validation functions to be part of the conjoint validation are to be supplied as one-sided
R formulas (using a leading ~, and having a . stand in as the data object). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table.

Usage

conjointly(
x,
...,
.list = list2(...),
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_conjointly(
object,
...,
.list = list2(...),
preconditions = NULL,
threshold = 1

)

test_conjointly(
object,

232 conjointly

...,

.list = list2(...),
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

... Validation expressions
<validation expressions> // required (or, use .list)
A collection one-sided formulas that consist of validation functions that validate
row units (the col_vals_*() series), column existence (col_exists()), or col-
umn type (the col_is_*() series). An example of this is ~ col_vals_gte(., a, 5.5), ~ col_vals_not_null(., b).

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)
Allows for the use of a list as an input alternative to

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step

conjointly 233

index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

234 conjointly

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

conjointly 235

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

236 conjointly

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When conjointly() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of conjointly() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
conjointly(
~ col_vals_lt(., columns = a, value = 8),
~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `conjointly()` step.",
active = FALSE

)

YAML representation:

steps:
- conjointly:

fns:
- ~col_vals_lt(., columns = a, value = 8)
- ~col_vals_gt(., columns = c, value = vars(a))
- ~col_vals_not_null(., columns = b)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `conjointly()` step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

conjointly 237

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a
very basic table but it’ll be more useful when explaining things later.

tbl <-
dplyr::tibble(
a = c(5, 2, 6),
b = c(3, 4, 6),
c = c(9, 8, 7)

)

tbl
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

A: Using an agent with validation functions and then interrogate():
Validate a number of things on a row-by-row basis using validation functions of the col_vals*
type (all have the same number of test units): (1) values in a are less than 8, (2) values in c are
greater than the adjacent values in a, and (3) there aren’t any NA values in b. We’ll determine if
this validation has any failing test units (there are 3 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
conjointly(
~ col_vals_lt(., columns = a, value = 8),
~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)
) %>%

interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
What’s going on? Think of there being three parallel validations, each producing a column of
TRUE or FALSE values (pass or fail) and line them up side-by-side, any rows with any FALSE
values results in a conjoint fail test unit.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
conjointly(
~ col_vals_lt(., columns = a, value = 8),

238 conjointly

~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)

)
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_conjointly(
tbl,
~ col_vals_lt(., columns = a, value = 8),
~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>%
test_conjointly(
~ col_vals_lt(., columns = a, value = 8),
~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)

)
#> [1] TRUE

Function ID

2-34

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()

create_agent 239

create_agent Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting
workflow. The overall aim of this workflow is to generate useful reporting information for as-
sessing the level of data quality for the target table. We can supply as many validation functions
as the user wishes to write, thereby increasing the level of validation coverage for that table. The
agent assigned by the create_agent() call takes validation functions (e.g., col_vals_between(),
rows_distinct(), etc.), which translate to discrete validation steps (each one is numbered and will
later provide its own set of results). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the
interrogate() function is called. That kicks off the process of the agent acting on the valida-
tion plan and getting results for each step. Once the interrogation process is complete, we can say
that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the
interrogation can also be accessed with the get_agent_report() function, where there are more
reporting options.

Usage

create_agent(
tbl = NULL,
tbl_name = NULL,
label = NULL,
actions = NULL,
end_fns = NULL,
embed_report = FALSE,
lang = NULL,
locale = NULL,
read_fn = NULL

)

Arguments

tbl Table or expression for reading in one
obj:<tbl_*>|<tbl reading expression> // required
The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at interrogation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,
which is a right-hand side (RHS) formula expression (e.g., ~ { <tbl reading code>}),
or (2) as a function (e.g., function() { <tbl reading code>}).

tbl_name A table name
scalar<character> // default: NULL (optional)

240 create_agent

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

label An optional label for the validation plan
scalar<character> // default: NULL (optional)
An optional label for the validation plan. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
agent report).

actions Default thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A option to include a list with threshold levels so that all validation steps can
react accordingly when exceeding the set levels. This is to be created with the
action_levels() helper function. Should an action levels list be used for a
specific validation step, the default set specified here will be overridden.

end_fns Functions to execute after interrogation
list // default: NULL (optional)
A list of expressions that should be invoked at the end of an interrogation. Each
expression should be in the form of a one-sided R formula, so overall this con-
struction should be used: end_fns = list(~ <R statements>, ~ <R statements>, ...).
An example of a function included in pointblank that can be sensibly used here
is email_blast(), which sends an email of the validation report (based on a
sending condition).

embed_report Embed the validation report into agent object?
scalar<logical> // default: FALSE
An option to embed a gt-based validation report into the ptblank_agent object.
If FALSE then the table object will be not generated and available with the agent
upon returning from the interrogation.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl").

locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES").

create_agent 241

read_fn Deprecated Table reading function
function // default: NULL (optional)
The read_fn argument is deprecated. Instead, supply a table-prep formula or
function to tbl.

Value

A ptblank_agent object.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

The Use of an Agent for Validation Is Just One Option of Several

There are a few validation workflows and using an agent is the one that provides the most options.
It is probably the best choice for assessing the state of data quality since it yields detailed reporting,
has options for further exploration of root causes, and allows for granular definition of actions to be
taken based on the severity of validation failures (e.g., emailing, logging, etc.).

Different situations, however, call for different validation workflows. You use validation functions
(the same ones you would with an agent) directly on the data. This acts as a sort of data filter in that
the input table will become output data (without modification), but there may be warnings, errors,
or other side effects that you can define if validation fails. Basically, instead of this

create_agent(tbl = small_table) %>% rows_distinct() %>% interrogate()

you would use this:

small_table %>% rows_distinct()

This results in an error (with the default failure threshold settings), displaying the reason for the
error in the console. Notably, the data is not passed though.

We can use variants of the validation functions, the test (test_*()) and expectation (expect_*())
versions, directly on the data for different workflows. The first returns to us a logical value. So this

242 create_agent

small_table %>% test_rows_distinct()

returns FALSE instead of an error.

In a unit testing scenario, we can use expectation functions exactly as we would with testthat’s
library of expect_*() functions:

small_table %>% expect_rows_distinct()

This test of small_table would be counted as a failure.

The Agent Report

While printing an agent (a ptblank_agent object) will display its reporting in the Viewer, we can
alternatively use the get_agent_report() to take advantage of other options (e.g., overriding the
language, modifying the arrangement of report rows, etc.), and to return the report as independent
objects. For example, with the display_table = TRUE option (the default), get_agent_report()
will return a ptblank_agent_report object. If display_table is set to FALSE, we’ll get a data
frame back instead.

Exporting the report as standalone HTML file can be accomplished by using the export_report()
function. This function can accept either the ptblank_agent object or the ptblank_agent_report
as input. Each HTML document written to disk in this way is self-contained and easily viewable in
a web browser.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list()
function on the agent. This font of information can be taken as a whole, or, broken down by the
step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts()
function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one
tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the ’pass’ and ’fail’ portions with the get_sundered_data()
function. A primary requirement is an agent that has had interrogate() called on it. In addition,
the validation steps considered for this data splitting need to be those that operate on values down a
column (e.g., the col_vals_*() functions or conjointly()). With these in-consideration valida-
tion steps, rows with no failing test units across all validation steps comprise the ’pass’ data piece,
and rows with at least one failing test unit across the same series of validations constitute the ’fail’
piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test
units), the all_passed() function could be used on the agent. However, in practice, it’s not often
the case that all data validation steps are free from any failing units.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how a complex call of create_agent()
is expressed in R code and in the corresponding YAML representation.

create_agent 243

R statement:

create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35,
fns = list(notify = ~ email_blast(
x,
to = "joe_public@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(
id = "smtp2go"

)
))

),
end_fns = list(
~ beepr::beep(2),
~ Sys.sleep(1)

),
embed_report = TRUE,
lang = "fr",
locale = "fr_CA"

)

YAML representation:

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: fr
locale: fr_CA
actions:
warn_fraction: 0.1
stop_fraction: 0.25
notify_fraction: 0.35
fns:
notify: ~email_blast(x, to = "joe_public@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(id = "smtp2go"))

end_fns:
- ~beepr::beep(2)

244 create_agent

- ~Sys.sleep(1)
embed_report: true
steps: []

In practice, this YAML file will be shorter since arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). The only requirement for writing the YAML representation
of an agent is having tbl specified as table-prep formula.

What typically follows this chunk of YAML is a steps part, and that corresponds to the addition
of validation steps via validation functions. Help articles for each validation function have a YAML
section that describes how a given validation function is translated to YAML.

Should you need to preview the transformation of an agent to YAML (without any committing
anything to disk), use the yaml_agent_string() function. If you already have a .yml file that
holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent
with yaml_agent_show_exprs().

Writing an Agent to Disk

An agent object can be written to disk with the x_write_disk() function. This can be useful for
keeping a history of validations and generating views of data quality over time. Agents are stored
in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_agent().
In this way, when an agent is read from disk through x_read_disk(), it can be reused to access the
target table (which may change, hence the need to use an expression for this).

Combining Several Agents in a multiagent Object

Multiple agent objects can be part of a multiagent object, and two functions can be used for this:
create_multiagent() and read_disk_multiagent(). By gathering multiple agents that have
performed interrogations in the past, we can get a multiagent report showing how data quality
evolved over time. This use case is interesting for data quality monitoring and management, and,
the reporting (which can be customized with get_multiagent_report()) is robust against changes
in validation steps for a given target table.

Examples

Creating an agent, adding a validation plan, and interrogating:
Let’s walk through a data quality analysis of an extremely small table. It’s actually called small_table
and we can find it as a dataset in this package.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid

create_agent 245

#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

We ought to think about what’s tolerable in terms of data quality so let’s designate proportional
failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(

warn_at = 0.10,
stop_at = 0.25,

notify_at = 0.35
)

Now create a pointblank agent object and give it the al object (which serves as a default for all
validation steps which can be overridden). The static thresholds provided by al will make the re-
porting a bit more useful. We also provide a target table and we’ll use pointblank::small_table.

agent <-
create_agent(
tbl = pointblank::small_table,
tbl_name = "small_table",
label = "`create_agent()` example.",
actions = al

)

Then, as with any agent object, we can add steps to the validation plan by using as many valida-
tion functions as we want. then, we use interrogate() to actually perform the validations and
gather intel.

agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5) %>%
col_vals_between(
columns = c,
left = vars(a), right = vars(d),
na_pass = TRUE

) %>%
interrogate()

246 create_agent

The agent object can be printed to see the validation report in the Viewer.

agent

If we want to make use of more report display options, we can alternatively use the get_agent_report()
function.

report <-
get_agent_report(
agent = agent,
arrange_by = "severity",
title = "Validation of `small_table`"

)

report

Post-interrogation operations:
We can use the agent object with a variety of functions to get at more of the information collected
during interrogation.
We can see from the validation report that Step 4 (which used the rows_distinct() validation
function) had two test units, corresponding to duplicated rows, that failed. We can see those rows
with get_data_extracts().

agent %>% get_data_extracts(i = 4)

A tibble: 2 × 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
2 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high

We can get an x-list for the entire validation process (7 steps), or, just for the 4th step with
get_agent_x_list().

xl_step_4 <- agent %>% get_agent_x_list(i = 4)

And then we can peruse the different parts of the list. Let’s get the fraction of test units that failed.

xl_step_4$f_failed

#> [1] 0.15385

An x-list not specific to any step will have way more information and a slightly different structure.
See help(get_agent_x_list) for more info.

Function ID

1-2

See Also

Other Planning and Prep: action_levels(), create_informant(), db_tbl(), draft_validation(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

create_informant 247

create_informant Create a pointblank informant object

Description

The create_informant() function creates an informant object, which is used in an information
management workflow. The overall aim of this workflow is to record, collect, and generate useful
information on data tables. We can supply any information that is useful for describing a particular
data table. The informant object created by the create_informant() function takes information-
focused functions: info_columns(), info_tabular(), info_section(), and info_snippet().

The info_*() series of functions allows for a progressive build up of information about the target
table. The info_columns() and info_tabular() functions facilitate the entry of info text that con-
cerns the table columns and the table proper; the info_section() function allows for the creation
of arbitrary sections that can have multiple subsections full of additional info text. The system al-
lows for dynamic values culled from the target table by way of info_snippet(), for getting named
text extracts from queries, and the use of {<snippet_name>} in the info text. To make the use of
info_snippet() more convenient for common queries, a set of snip_*() functions are provided
in the package (snip_list(), snip_stats(), snip_lowest(), and snip_highest()) though you
are free to use your own expressions.

Because snippets need to query the target table to return fragments of info text, the incorporate()
function needs to be used to initiate this action. This is also necessary for the informant to up-
date other metadata elements such as row and column counts. Once the incorporation process is
complete, snippets and other metadata will be updated. Calling the informant itself will result in a
reporting table. This reporting can also be accessed with the get_informant_report() function,
where there are more reporting options.

Usage

create_informant(
tbl = NULL,
tbl_name = NULL,
label = NULL,
agent = NULL,
lang = NULL,
locale = NULL,
read_fn = NULL

)

Arguments

tbl Table or expression for reading in one
obj:<tbl_*>|<tbl reading expression> // required
The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at incorporation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,

248 create_informant

which is a right-hand side (RHS) formula expression (e.g., ~ { <tbl reading code>}),
or (2) as a function (e.g., function() { <tbl reading code>}).

tbl_name A table name
scalar<character> // default: NULL (optional)
A optional name to assign to the input table object. If no value is provided, a
name will be generated based on whatever information is available.

label An optional label for the information report
scalar<character> // default: NULL (optional)
An optional label for the information report. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
information report).

agent The pointblank agent object
obj:<ptblank_agent> // default: NULL (optional)
A pointblank agent object. The table from this object can be extracted and used
in the new informant instead of supplying a table in tbl.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for the information report (a summary table that provides
all of the available information for the table. By default, NULL will create
English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl").

locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the information report
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").

read_fn Deprecated Table reading function
function // default: NULL (optional)
The read_fn argument is deprecated. Instead, supply a table-prep formula or
function to tbl.

Value

A ptblank_informant object.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

create_informant 249

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Here is an example of how
a complex call of create_informant() is expressed in R code and in the corresponding YAML
representation.

R statement:

create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
lang = "fr",
locale = "fr_CA"

)

YAML representation:

type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
name: small_table
_columns: 8
_rows: 13.0
_type: tbl_df

columns:
date_time:
_type: POSIXct, POSIXt

date:
_type: Date

a:

250 create_informant

_type: integer
b:
_type: character

c:
_type: numeric

d:
_type: numeric

e:
_type: logical

f:
_type: character

The generated YAML includes some top-level keys where type and tbl are mandatory, and, two
metadata sections: table and columns. Keys that begin with an underscore character are those
that are updated whenever incorporate() is called on an informant. The table metadata section
can have multiple subsections with info text. The columns metadata section can similarly have
have multiple subsections, so long as they are children to each of the column keys (in the above
YAML example, date_time and date are column keys and they match the table’s column names).
Additional sections can be added but they must have key names on the top level that don’t duplicate
the default set (i.e., type, table, columns, etc. are treated as reserved keys).

Writing an Informant to Disk

An informant object can be written to disk with the x_write_disk() function. Informants are
stored in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_informant().
In this way, when an informant is read from disk through x_read_disk(), it can be reused to access
the target table (which may changed, hence the need to use an expression for this).

Examples

Let’s walk through how we can generate some useful information for a really small table. It’s
actually called small_table and we can find it as a dataset in this package.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high

create_informant 251

#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Create a pointblank informant object with create_informant() and the small_table dataset.

informant <-
create_informant(
tbl = pointblank::small_table,
tbl_name = "small_table",
label = "`create_informant()` example."

)

This function creates some information without any extra help by profiling the supplied table object.
It adds the COLUMNS section with stubs for each of the target table’s columns. We can use the
info_columns() or info_columns_from_tbl() to provide descriptions for each of the columns.
The informant object can be printed to see the information report in the Viewer.

informant

If we want to make use of more report display options, we can alternatively use the get_informant_report()
function.

report <-
get_informant_report(
informant,
title = "Data Dictionary for `small_table`"

)

report

Function ID

1-3

See Also

Other Planning and Prep: action_levels(), create_agent(), db_tbl(), draft_validation(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

252 create_multiagent

create_multiagent Create a pointblank multiagent object

Description

Multiple agents can be part of a single object called the multiagent. This can be useful when
gathering multiple agents that have performed interrogations in the past (perhaps saved to disk
with x_write_disk()). When be part of a multiagent, we can get a report that shows how data
quality evolved over time. This can be of interest when it’s important to monitor data quality
and even the evolution of the validation plan itself. The reporting table, generated by printing
a ptblank_multiagent object or by using the get_multiagent_report() function, is, by de-
fault, organized by the interrogation time and it automatically recognizes which validation steps are
equivalent across interrogations.

Usage

create_multiagent(..., lang = NULL, locale = NULL)

Arguments

... Pointblank agents
<series of obj:<ptblank_agent>> // required
One or more pointblank agent objects.

lang Reporting language
scalar<character> // default: NULL (optional)

The language to use for any reporting that will be generated from the multia-
gent. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl").

locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)

An optional locale ID to use for formatting values in the reporting outputs
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").

Value

A ptblank_multiagent object.

create_multiagent 253

Examples

For the example below, we’ll use two different, yet simple tables.

First, tbl_1:

tbl_1 <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl_1
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

And next, tbl_2:

tbl_2 <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = LETTERS[1:6]

)

tbl_2
#> # A tibble: 6 x 2
#> a b
#> <dbl> <chr>
#> 1 5 A
#> 2 7 B
#> 3 6 C
#> 4 5 D
#> 5 8 E
#> 6 7 F

Next, we’ll create two different agents, each interrogating a different table.

First up, is agent_1:

254 create_multiagent

agent_1 <-
create_agent(
tbl = tbl_1,
tbl_name = "tbl_1",
label = "Example table 1."

) %>%
col_vals_gt(columns = a, value = 4) %>%
interrogate()

Then, agent_2:

agent_2 <-
create_agent(
tbl = tbl_2,
tbl_name = "tbl_2",
label = "Example table 2."

) %>%
col_is_character(columns = b) %>%
interrogate()

Now, we’ll combine the two agents into a multiagent with the create_multiagent() function.
Printing the "ptblank_multiagent" object displays the multiagent report with its default options
(i.e., a ’long’ report view).

multiagent <- create_multiagent(agent_1, agent_2)

multiagent

To take advantage of more display options, we could use the get_multiagent_report() function.
The added functionality there allows for a ’wide’ view of the data (useful for monitoring validations
of the same table over repeated interrogations), the ability to modify the title of the multiagent
report, and a means to export the report to HTML (via export_report()).

Function ID

10-1

See Also

Other The multiagent: get_multiagent_report(), read_disk_multiagent()

db_tbl 255

db_tbl Get a table from a database

Description

If your target table is in a database, the db_tbl() function is a handy way of accessing it. This
function simplifies the process of getting a tbl_dbi object, which usually involves a combination
of building a connection to a database and using the dplyr::tbl() function with the connection
and the table name (or a reference to a table in a schema). You can use db_tbl() as the basis
for obtaining a database table for the tbl parameter in create_agent() or create_informant().
Another great option is supplying a table-prep formula involving db_tbl() to tbl_store() so that
you have access to database tables though single names via a table store.

The username and password are supplied through environment variable names. If desired, values
for the username and password can be supplied directly by enclosing such values in I().

Usage

db_tbl(
table,
dbtype,
dbname = NULL,
host = NULL,
port = NULL,
user = NULL,
password = NULL,
bq_project = NULL,
bq_dataset = NULL,
bq_billing = bq_project

)

Arguments

table The name of the table, or, a reference to a table in a schema (two-element vector
with the names of schema and table). Alternatively, this can be supplied as a
data table to copy into an in-memory database connection. This only works if:
(1) the db is chosen as either "sqlite" or "duckdb", (2) the dbname was is set
to ":memory:", and (3) the object supplied to table is a data frame or a tibble
object.

dbtype Either an appropriate driver function (e.g., RPostgres::Postgres()) or a short-
name for the database type. Valid names are: "postgresql", "postgres",
or "pgsql" (PostgreSQL, using the RPostgres::Postgres() driver function);
"mysql" (MySQL, using RMySQL::MySQL()); bigquery or bq (BigQuery, using
bigrquery::bigquery()); "duckdb" (DuckDB, using duckdb::duckdb());
and "sqlite" (SQLite, using RSQLite::SQLite()).

dbname The database name.

host, port The database host and optional port number.

256 db_tbl

user, password The environment variables used to access the username and password for the
database. Enclose in I() when using literal username or password values.

bq_project, bq_dataset, bq_billing
If accessing a table from a BigQuery data source, there’s the requirement to
provide the table’s associated project (bq_project) and dataset (bq_dataset)
names. By default, the project to be billed will be the same as the one pro-
vided for bq_project but the bq_billing argument can be changed to reflect
a different BigQuery project.

Value

A tbl_dbi object.

Examples

Obtaining in-memory database tables:
You can use an in-memory database table and by supplying it with an in-memory table. This works
with the DuckDB database and the key thing is to use dbname = ":memory" in the db_tbl() call.

small_table_duckdb <-
db_tbl(
table = small_table,
dbtype = "duckdb",
dbname = ":memory:"

)

small_table_duckdb

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bc. . . 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-eg. . . 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kd. . . 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jd. . . NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ld. . . 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dh. . . 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-kn. . . 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-bo. . . 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bc. . . 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bc. . . 9 838. FALSE high
. . . with more rows

The in-memory option also works using the SQLite database. The only change required is setting
the dbtype to "sqlite":

small_table_sqlite <-
db_tbl(
table = small_table,

db_tbl 257

dbtype = "sqlite",
dbname = ":memory:"

)

small_table_sqlite

Source: table<small_table> [?? x 8]
Database: sqlite 3.37.0 [:memory:]
date_time date a b c d e f
<dbl> <dbl> <int> <chr> <dbl> <dbl> <int> <chr>
1 1451905200 16804 2 1-bcd-345 3 3423. 1 high
2 1451867520 16804 3 5-egh-163 8 10000. 1 low
3 1452000720 16805 6 8-kdg-938 3 2343. 1 high
4 1452100980 16806 2 5-jdo-903 NA 3892. 0 mid
5 1452342960 16809 8 3-ldm-038 7 284. 1 low
6 1452492900 16811 4 2-dhe-923 4 3291. 1 mid
7 1452883560 16815 7 1-knw-093 3 843. 1 high
8 1453030020 16817 4 5-boe-639 2 1036. 0 low
9 1453264200 16820 3 5-bce-642 9 838. 0 high
10 1453264200 16820 3 5-bce-642 9 838. 0 high
. . . with more rows

It’s also possible to obtain a table from a remote file and shove it into an in-memory database. For
this, we can use the all-powerful file_tbl() + db_tbl() combo.

all_revenue_large_duckdb <-
db_tbl(
table = file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"

)
),
dbtype = "duckdb",
dbname = ":memory:"

)

all_revenue_large_duckdb

Source: table<sj_all_revenue_large.rds> [?? x 11]
Database: duckdb_connection
player_id session_id session_start time
<chr> <chr> <dttm> <dttm>
1 IRZKSAOYUJME796 IRZKSAOYUJM. . . 2015-01-01 00:18:41 2015-01-01 00:18:53
2 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:13:07
3 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:23:37
4 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:24:37
5 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:31:01
6 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:31:43

258 db_tbl

7 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:36:01
8 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:31:27
9 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:36:57
10 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:37:45
. . . with more rows, and 7 more variables: item_type <chr>,
item_name <chr>, item_revenue <dbl>, session_duration <dbl>,
start_day <date>, acquisition <chr>, country <chr>

And that’s really it.

Obtaining remote database tables:
For remote databases, we have to specify quite a few things but it’s a one-step process nonethe-
less. Here’s an example that accesses the rna table (in the RNA Central public database) using
db_tbl(). Here, for the user and password entries we are using the literal username and pass-
word values (publicly available when visiting the RNA Central website) by enclosing the values
in I().

rna_db_tbl <-
db_tbl(
table = "rna",
dbtype = "postgres",
dbname = "pfmegrnargs",
host = "hh-pgsql-public.ebi.ac.uk",
port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")

)

rna_db_tbl

Source: table<rna> [?? x 9]
Database: postgres
[reader@hh-pgsql-public.ebi.ac.uk:5432/pfmegrnargs]
id upi timestamp userstamp crc64 len seq_short
<int64> <chr> <dttm> <chr> <chr> <int> <chr>
1 25222431 URS00. . . 2019-12-02 13:26:46 rnacen E65C. . . 521 AGAGTTTG. . .
2 25222432 URS00. . . 2019-12-02 13:26:46 rnacen 6B91. . . 520 AGAGTTCG. . .
3 25222433 URS00. . . 2019-12-02 13:26:46 rnacen 03B8. . . 257 TACGTAGG. . .
4 25222434 URS00. . . 2019-12-02 13:26:46 rnacen E925. . . 533 AGGGTTTG. . .
5 25222435 URS00. . . 2019-12-02 13:26:46 rnacen C2D0. . . 504 GACGAACG. . .
6 25222436 URS00. . . 2019-12-02 13:26:46 rnacen 9EF6. . . 253 TACAGAGG. . .
7 25222437 URS00. . . 2019-12-02 13:26:46 rnacen 685A. . . 175 GAGGCAGC. . .
8 25222438 URS00. . . 2019-12-02 13:26:46 rnacen 4228. . . 556 AAAACATC. . .
9 25222439 URS00. . . 2019-12-02 13:26:46 rnacen B7CC. . . 515 AGGGTTCG. . .
10 25222440 URS00. . . 2019-12-02 13:26:46 rnacen 038B. . . 406 ATTGAACG. . .
. . . with more rows, and 2 more variables: seq_long <chr>, md5 <chr>

You’d normally want to use the names of environment variables (envvars) to more securely ac-
cess the appropriate username and password values when connecting to a DB. Here are all the
necessary inputs:

db_tbl 259

example_db_tbl <-
db_tbl(
table = "<table_name>",
dbtype = "<database_type_shortname>",
dbname = "<database_name>",
host = "<connection_url>",
port = "<connection_port>",
user = "<DB_USER_NAME>",
password = "<DB_PASSWORD>"

)

Environment variables can be created by editing the user .Renviron file and the usethis::edit_r_environ()
function makes this pretty easy to do.

DB table access and prep via the table store:
Using table-prep formulas in a centralized table store can make it easier to work with DB tables
in pointblank. Here’s how to generate a table store with two named entries for table preparations
involving the tbl_store() and db_tbl() functions.

store <-
tbl_store(
small_table_duck ~ db_tbl(
table = pointblank::small_table,
dbtype = "duckdb",
dbname = ":memory:"

),
small_high_duck ~ {{ small_table_duck }} %>%
dplyr::filter(f == "high")

)

Now it’s easy to obtain either of these tables via tbl_get(). We can reference the table in the
store by its name (given to the left of the ~).

tbl_get(tbl = "small_table_duck", store = store)

Source: table<pointblank::small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
. . . with more rows, and 1 more variable: f <chr>

260 db_tbl

The second table in the table store is a mutated version of the first. It’s just as easily obtainable
via tbl_get():

tbl_get(tbl = "small_high_duck", store = store)

Source: lazy query [?? x 8]
Database: duckdb_connection
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE
. . . with more rows, and 1 more variable: f <chr>

The table-prep formulas in the store object could also be used in functions with a tbl argument
(like create_agent() and create_informant()). This is accomplished most easily with the
tbl_source() function.

agent <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck",
store = tbls

)
)

informant <-
create_informant(
tbl = ~ tbl_source(
tbl = "small_high_duck",
store = tbls

)
)

Function ID

1-6

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), draft_validation(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

deactivate_steps 261

deactivate_steps Deactivate one or more of an agent’s validation steps

Description

Should the deactivation of one or more validation steps be necessary after creation of the validation
plan for an agent, the deactivate_steps() function will be helpful for that. This has the same
effect as using the active = FALSE option (active is an argument in all validation functions) for
the selected validation steps. Please note that this directly edits the validation step, wiping out any
function that may have been defined for whether the step should be active or not.

Usage

deactivate_steps(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

i A validation step number
scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step in the
order of definition. If NULL (the default) then step deactivation won’t occur by
index.

Value

A ptblank_agent object.

Function ID

9-6

See Also

For the opposite behavior, use the activate_steps() function.

Other Object Ops: activate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

262 draft_validation

Examples

Create an agent that has the
`small_table` object as the
target table, add a few
validation steps, and then use
`interrogate()`
agent_1 <-

create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example."

) %>%
col_exists(columns = date) %>%
col_vals_regex(

columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]"

) %>%
interrogate()

The second validation step is
now being reconsidered and may
be either phased out or improved
upon; in the interim period it
was decided that the step should
be deactivated for now
agent_2 <-

agent_1 %>%
deactivate_steps(i = 2) %>%
interrogate()

draft_validation Draft a starter pointblank validation .R/.Rmd file with a data table

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this
workflow, the data table will be scanned to learn about its column data and a set of starter validation
steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at
least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particu-
lar domain. While column inference is used to generate reasonable validation plans, it is difficult to
infer the acceptable values without domain expertise. However, using draft_validation() could
get you started on floor 10 of tackling data quality issues and is in any case better than starting with
an empty code editor view.

draft_validation 263

Usage

draft_validation(
tbl,
tbl_name = NULL,
filename = tbl_name,
path = NULL,
lang = NULL,
output_type = c("R", "Rmd"),
add_comments = TRUE,
overwrite = FALSE,
quiet = FALSE

)

Arguments

tbl A data table
obj:<tbl_*> // required
The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark
object.

tbl_name A table name
scalar<character> // default: NULL (optional)
A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

filename File name
scalar<character> // default: tbl_name
An optional name for the .R or .Rmd file. This should be a name without an
extension. By default, this is taken from the tbl_name but if nothing is supplied
for that, the name will contain the text "draft_validation_" followed by the
current date and time.

path File path
scalar<character> // default: NULL (optional)
A path can be specified here if there shouldn’t be an attempt to place the gener-
ated file in the working directory.

lang Commenting language
scalar<character> // default: NULL (optional)
The language to use when creating comments for the automatically- generated
validation steps. By default, NULL will create English ("en") text. Other options
include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Por-
tuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"),
Danish ("da"), Swedish ("sv"), and Dutch ("nl").

output_type The output file type
singl-kw:[R|Rmd] // default: "R"
An option for choosing what type of output should be generated. By default, this
is an .R script ("R") but this could alternatively be an R Markdown document
("Rmd").

264 draft_validation

add_comments Add comments to the generated validation plan
scalar<logical> // default: TRUE
Should there be comments that explain the features of the validation plan in the
generated document?

overwrite Overwrite a previous file of the same name
scalar<logical> // default: FALSE
Should a file of the same name be overwritten?

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Value

Invisibly returns TRUE if the file has been written.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Examples

Let’s draft a validation plan for the dplyr::storms dataset.

dplyr::storms
#> # A tibble: 19,537 x 13
#> name year month day hour lat long status category wind pressure
#> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <fct> <dbl> <int> <int>
#> 1 Amy 1975 6 27 0 27.5 -79 tropical d~ NA 25 1013
#> 2 Amy 1975 6 27 6 28.5 -79 tropical d~ NA 25 1013
#> 3 Amy 1975 6 27 12 29.5 -79 tropical d~ NA 25 1013
#> 4 Amy 1975 6 27 18 30.5 -79 tropical d~ NA 25 1013
#> 5 Amy 1975 6 28 0 31.5 -78.8 tropical d~ NA 25 1012
#> 6 Amy 1975 6 28 6 32.4 -78.7 tropical d~ NA 25 1012
#> 7 Amy 1975 6 28 12 33.3 -78 tropical d~ NA 25 1011

draft_validation 265

#> 8 Amy 1975 6 28 18 34 -77 tropical d~ NA 30 1006
#> 9 Amy 1975 6 29 0 34.4 -75.8 tropical s~ NA 35 1004
#> 10 Amy 1975 6 29 6 34 -74.8 tropical s~ NA 40 1002
#> # i 19,527 more rows
#> # i 2 more variables: tropicalstorm_force_diameter <int>,
#> # hurricane_force_diameter <int>

The draft_validation() function creates an .R file by default. Using just the defaults with
dplyr::storms will yield the "dplyr__storms.R" file in the working directory. Here are the
contents of the file:

library(pointblank)

agent <-
create_agent(
tbl = ~ dplyr::storms,
actions = action_levels(
warn_at = 0.05,
stop_at = 0.10

),
tbl_name = "dplyr::storms",
label = "Validation plan generated by `draft_validation()`."

) %>%
Expect that column `name` is of type: character
col_is_character(
columns = name

) %>%
Expect that column `year` is of type: numeric
col_is_numeric(
columns = year

) %>%
Expect that values in `year` should be between `1975` and `2020`
col_vals_between(
columns = year,
left = 1975,
right = 2020

) %>%
Expect that column `month` is of type: numeric
col_is_numeric(
columns = month

) %>%
Expect that values in `month` should be between `1` and `12`
col_vals_between(
columns = month,
left = 1,
right = 12

) %>%
Expect that column `day` is of type: integer
col_is_integer(

266 draft_validation

columns = day
) %>%
Expect that values in `day` should be between `1` and `31`
col_vals_between(
columns = day,
left = 1,
right = 31

) %>%
Expect that column `hour` is of type: numeric
col_is_numeric(
columns = hour

) %>%
Expect that values in `hour` should be between `0` and `23`
col_vals_between(
columns = hour,
left = 0,
right = 23

) %>%
Expect that column `lat` is of type: numeric
col_is_numeric(
columns = lat

) %>%
Expect that values in `lat` should be between `-90` and `90`
col_vals_between(
columns = lat,
left = -90,
right = 90

) %>%
Expect that column `long` is of type: numeric
col_is_numeric(
columns = long

) %>%
Expect that values in `long` should be between `-180` and `180`
col_vals_between(
columns = long,
left = -180,
right = 180

) %>%
Expect that column `status` is of type: character
col_is_character(
columns = status

) %>%
Expect that column `category` is of type: factor
col_is_factor(
columns = category

) %>%
Expect that column `wind` is of type: integer
col_is_integer(

draft_validation 267

columns = wind
) %>%
Expect that values in `wind` should be between `10` and `160`
col_vals_between(
columns = wind,
left = 10,
right = 160

) %>%
Expect that column `pressure` is of type: integer
col_is_integer(
columns = pressure

) %>%
Expect that values in `pressure` should be between `882` and `1022`
col_vals_between(
columns = pressure,
left = 882,
right = 1022

) %>%
Expect that column `tropicalstorm_force_diameter` is of type: integer
col_is_integer(
columns = tropicalstorm_force_diameter

) %>%
Expect that values in `tropicalstorm_force_diameter` should be between
`0` and `870`
col_vals_between(
columns = tropicalstorm_force_diameter,
left = 0,
right = 870,
na_pass = TRUE

) %>%
Expect that column `hurricane_force_diameter` is of type: integer
col_is_integer(
columns = hurricane_force_diameter

) %>%
Expect that values in `hurricane_force_diameter` should be between
`0` and `300`
col_vals_between(
columns = hurricane_force_diameter,
left = 0,
right = 300,
na_pass = TRUE

) %>%
Expect entirely distinct rows across all columns
rows_distinct() %>%
Expect that column schemas match
col_schema_match(
schema = col_schema(
name = "character",

268 email_blast

year = "numeric",
month = "numeric",
day = "integer",
hour = "numeric",
lat = "numeric",
long = "numeric",
status = "character",
category = c("ordered", "factor"),
wind = "integer",
pressure = "integer",
tropicalstorm_force_diameter = "integer",
hurricane_force_diameter = "integer"

)
) %>%
interrogate()

agent

This is runnable as is, and the promise is that the interrogation should produce no failing test units.
After execution, we get the following validation report:

All of the expressions in the resulting file constitute just a rough approximation of what a validation
plan should be for a dataset. Certainly, the value ranges in the emitted col_vals_between() may
not be realistic for the wind column and may require some modification (the provided left and
right values are just the limits of the provided data). However, note that the lat and long (latitude
and longitude) columns have acceptable ranges (providing the limits of valid lat/lon values). This is
thanks to pointblank’s column inference routines, which is able to understand what certain columns
contain.

For an evolving dataset that will experience changes (either in the form of revised data and addi-
tion/deletion of rows or columns), the emitted validation will serve as a good first step and changes
can more easily be made since there is a foundation to build from.

Function ID

1-11

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

email_blast Conditionally send email during interrogation

email_blast 269

Description

The email_blast() function is useful for sending an email message that explains the result of a
pointblank validation. It is powered by the blastula and glue packages. This function should
be invoked as part of the end_fns argument of create_agent(). It’s also possible to invoke
email_blast() as part of the fns argument of the action_levels() function (i.e., to send multi-
ple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with email_blast(), the analogous email_create() function
can be used with a pointblank agent object.

Usage

email_blast(
x,
to,
from,
credentials = NULL,
msg_subject = NULL,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer(),
send_condition = ~TRUE %in% x$notify

)

Arguments

x A reference to the x-list object prepared internally by the agent. This version
of the x-list is the same as that generated via get_agent_x_list(<agent>)
except this version is internally generated and hence only available in an internal
evaluation context.

to, from The email addresses for the recipients and of the sender.

credentials A credentials list object that is produced by either of the blastula::creds(),
blastula::creds_anonymous(), blastula::creds_key(), or blastula::creds_file()
functions. Please refer to the blastula documentation for information on how to
use these functions.

msg_subject The subject line of the email message.

msg_header, msg_body, msg_footer
Content for the header, body, and footer components of the HTML email mes-
sage.

send_condition An expression that should evaluate to a logical vector of length 1. If evaluated
as TRUE then the email will be sent, if FALSE then that won’t happen. The ex-
pression can use x-list variables (e.g., x$notify, x$type, etc.) and all of those
variables can be explored using the get_agent_x_list() function. The default
expression is ~ TRUE %in% x$notify, which results in TRUE if there are any TRUE
values in the x$notify logical vector (i.e., any validation step that results in a
’notify’ state).

270 email_blast

Value

Nothing is returned. The end result is the side-effect of email-sending if certain conditions are met.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how the use of email_blast() inside the
end_fns argument of create_agent() is expressed in R code and in the corresponding YAML
representation.

R statement:

create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = al,
end_fns = list(
~ email_blast(
x,
to = "joe_public@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(
id = "smtp2go"

)
)

)
) %>%
col_vals_gt(a, 1) %>%
col_vals_lt(a, 7)

YAML representation:

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
warn_count: 1.0
notify_count: 2.0

end_fns: ~email_blast(x, to = "joe_public@example.com",
from = "pb_notif@example.com", msg_subject = "Table Validation",
credentials = blastula::creds_key(id = "smtp2go"),
)

embed_report: true

email_blast 271

steps:
- col_vals_gt:

columns: c(a)
value: 1.0

- col_vals_lt:
columns: c(a)
value: 7.0

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to
create an action_levels() list object since this is useful for demonstrating an emailing scenario.
It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units,
respectively, for the two states).

al <-
action_levels(
warn_at = 1,
notify_at = 2

)

Validate that values in column a from small_tbl are always greater than 1 (with the col_vals_gt()
validation function), and, that values in a or are always less than 7.

The email_blast() function call is used in a list given to the end_fns argument of create_agent().
The email_blast() call itself has a send_condition argument that determines whether or not an
email will be sent. By default this is set to ~ TRUE %in% x$notify. Let’s unpack this a bit. The
variable x is a list (we call it an x-list) and it will be populated with elements pertaining to the agent.
After interrogation, and only if action levels were set for the notify state, x$notify will be present
as a logical vector where the length corresponds to the number of validation steps. Thus, if any of
those steps entered the notify state (here, it would take two or more failing test units, per step, for
that to happen), then the statement as a whole is TRUE and the email of the interrogation report will
be sent. Here is the complete set of statements for the creation of an agent, the addition of validation
steps, and the interrogation of data in small_table:

agent <-
create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example.",
actions = al,
end_fns = list(
~ email_blast(
x,
to = "a_person@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(id = "smtp2go"),
send_condition = ~ TRUE %in% x$notify

272 email_create

)
)

) %>%
col_vals_gt(a, value = 1) %>%
col_vals_lt(a, value = 7) %>%
interrogate()

The reason for the ~ present in the statements:

• ~ email_blast(...) and
• ~ TRUE %in% x$notify

is because this defers evocation of the emailing functionality (and also defers evaluation of the
send_condition value) until interrogation is complete (with interrogate()).

Function ID

4-1

See Also

Other Emailing: email_create(), stock_msg_body(), stock_msg_footer()

email_create Create an email object from a pointblank agent

Description

The email_create() function produces an email message object that could be sent using the blas-
tula package. By supplying a pointblank agent, a blastula email_message message object will be
created and printing it will make the HTML email message appear in the Viewer.

Usage

email_create(
x,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer()

)

Arguments

x The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

msg_header, msg_body, msg_footer
Content for the header, body, and footer components of the HTML email mes-
sage.

email_create 273

Value

A blastula email_message object.

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to
create an action_levels() list object since this is useful for demonstrating an emailing scenario.
It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units,
respectively, for the two states).

al <-
action_levels(
warn_at = 1,
notify_at = 2

)

In a workflow that involves an agent object, we can make use of the end_fns argument and pro-
grammatically email the report with the email_blast() function. However, an alternate workflow
that is demonstrated here is to produce the email object directly. This provides the flexibility to
send the email outside of the pointblank API. The email_create() function lets us do this with
an agent object. We can then view the HTML email just by printing email_object. It should
appear in the Viewer.

email_object <-
create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example.",
actions = al

) %>%
col_vals_gt(a, value = 1) %>%
col_vals_lt(a, value = 7) %>%
interrogate() %>%
email_create()

email_object

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()

274 export_report

export_report Export an agent, informant, multiagent, or table scan to HTML

Description

The agent, informant, multiagent, and the table scan object can be easily written as HTML with
export_report(). Furthermore, any report objects from the agent, informant, and multiagent (gen-
erated using get_agent_report(), get_informant_report(), and get_multiagent_report())
can be provided here for HTML export. Each HTML document written to disk is self-contained
and easily viewable in a web browser.

Usage

export_report(x, filename, path = NULL, quiet = FALSE)

Arguments

x One of several types of objects
<object> // required
An agent object of class ptblank_agent, an informant of class ptblank_informant,
a multiagent of class ptblank_multiagent, a table scan of class ptblank_tbl_scan,
or, customized reporting objects (ptblank_agent_report, ptblank_informant_report,
ptblank_multiagent_report.wide, ptblank_multiagent_report.long).

filename File name
scalar<character> // required
The filename to create on disk for the HTML export of the object provided. It’s
recommended that the extension ".html" is included.

path File path
scalar<character> // default: NULL (optional)
An optional path to which the file should be saved (this is automatically com-
bined with filename).

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Value

Invisibly returns TRUE if the file has been written.

Examples

A: Writing an agent report as HTML:
Let’s go through the process of (1) developing an agent with a validation plan (to be used for the
data quality analysis of the small_table dataset), (2) interrogating the agent with the interrogate()
function, and (3) writing the agent and all its intel to a file.
Creating an action_levels object is a common workflow step when creating a pointblank agent.
We designate failure thresholds to the warn, stop, and notify states using action_levels().

export_report 275

al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)

Now create a pointblank agent object and give it the al object (which serves as a default for all
validation steps which can be overridden). The data will be referenced in the tbl argument with
a leading ~.

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "`export_report()`",
actions = al

)

As with any agent object, we can add steps to the validation plan by using as many validation
functions as we want. Then, we interrogate().

agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5) %>%
interrogate()

The agent report can be written to an HTML file with export_report().

export_report(
agent,
filename = "agent-small_table.html"

)

If you’re consistently writing agent reports when periodically checking data, we could make use of
affix_date() or affix_datetime() depending on the granularity you need. Here’s an example
that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.html".

export_report(
agent,
filename = affix_datetime(
"agent-small_table.html"

)
)

276 export_report

B: Writing an informant report as HTML:
Let’s go through the process of (1) creating an informant object that minimally describes the
small_table dataset, (2) ensuring that data is captured from the target table using the incorporate()
function, and (3) writing the informant report to HTML.
Create a pointblank informant object with create_informant() and the small_table dataset.
Use incorporate() so that info snippets are integrated into the text.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "`export_report()`"

) %>%
info_snippet(
snippet_name = "high_a",
fn = snip_highest(column = "a")

) %>%
info_snippet(
snippet_name = "low_a",
fn = snip_lowest(column = "a")

) %>%
info_columns(
columns = a,
info = "From {low_a} to {high_a}."

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`."

) %>%
incorporate()

The informant report can be written to an HTML file with export_report(). Let’s do this with
affix_date() so the filename has a datestamp.

export_report(
informant,
filename = affix_date(
"informant-small_table.html"

)
)

C: Writing a table scan as HTML:
We can get a report that describes all of the data in the storms dataset.

tbl_scan <- scan_data(tbl = dplyr::storms)

file_tbl 277

The table scan object can be written to an HTML file with export_report().

export_report(
tbl_scan,
filename = "tbl_scan-storms.html"

)

Function ID

9-3

See Also

Other Object Ops: activate_steps(), deactivate_steps(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

file_tbl Get a table from a local or remote file

Description

If your target table is in a file, stored either locally or remotely, the file_tbl() function can make
it possible to access it in a single function call. Compatible file types for this function are: CSV
(.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory
tbl_df object, which can be used as a target table for create_agent() and create_informant().
Another great option is supplying a table-prep formula involving file_tbl() to tbl_store() so
that you have access to tables based on flat files though single names via a table store.

In the remote data use case, we can specify a URL starting with http://, https://, etc., and
ending with the file containing the data table. If data files are available in a GitHub repository then
we can use the from_github() function to specify the name and location of the table data in a
repository.

Usage

file_tbl(file, type = NULL, ..., keep = FALSE, verify = TRUE)

Arguments

file The complete file path leading to a compatible data table either in the user sys-
tem or at a http://, https://, ftp://, or ftps:// URL. For a file hosted in
a GitHub repository, a call to the from_github() function can be used here.

type The file type. This is normally inferred by file extension and is by default NULL to
indicate that the extension will dictate the type of file reading that is performed
internally. However, if there is no extension (and valid extensions are .csv,
.tsv, .rda, and .rds), we can provide the type as either of csv, tsv, rda, or
rds.

278 file_tbl

... Options passed to readr’s read_csv() or read_tsv() function. Both functions
have the same arguments and one or the other will be used internally based on
the file extension or an explicit value given to type.

keep In the case of a downloaded file, should it be stored in the working directory
(keep = TRUE) or should it be downloaded to a temporary directory? By default,
this is FALSE.

verify If TRUE (the default) then a verification of the data object having the data.frame
class will be carried out.

Value

A tbl_df object.

Examples

Producing tables from CSV files:
A local CSV file can be obtained as a tbl object by supplying a path to the file and some CSV
reading options (the ones used by readr::read_csv()) to the file_tbl() function. For this
example we could obtain a path to a CSV file in the pointblank package with system.file().

csv_path <-
system.file(
"data_files", "small_table.csv",
package = "pointblank"

)

Then use that path in file_tbl() with the option to specify the column types in that CSV.

tbl <-
file_tbl(
file = csv_path,
col_types = "TDdcddlc"

)

tbl

A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE low

file_tbl 279

12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE high

Now that we have a ‘tbl‘ object that is a tibble it could be introduced to create_agent() for
validation.

agent <- create_agent(tbl = tbl)

A different strategy is to provide the data-reading function call directly to create_agent():

agent <-
create_agent(
tbl = ~ file_tbl(
file = system.file(
"data_files", "small_table.csv",
package = "pointblank"

),
col_types = "TDdcddlc"

)
) %>%
col_vals_gt(columns = a, value = 0)

All of the file-reading instructions are encapsulated in the tbl expression (with the leading ~) so
the agent will always obtain the most recent version of the table (and the logic can be translated
to YAML, for later use).

Producing tables from files on GitHub:
A CSV can be obtained from a public GitHub repo by using the from_github() helper function.
Let’s create an agent a supply a table-prep formula that gets the same CSV file from the GitHub
repository for the pointblank package.

agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank"

),
col_types = "TDdcddlc"

),
tbl_name = "small_table",
label = "`file_tbl()` example.",

) %>%
col_vals_gt(columns = a, value = 0) %>%
interrogate()

agent

This interrogated the data that was obtained from the remote source file, and, there’s nothing to
clean up (by default, the downloaded file goes into a system temp directory).

280 file_tbl

File access, table creation, and prep via the table store:
Using table-prep formulas in a centralized table store can make it easier to work with tables
from disparate sources. Here’s how to generate a table store with two named entries for table
preparations involving the tbl_store() and file_tbl() functions.

store <-
tbl_store(
small_table_file ~ file_tbl(
file = system.file(
"data_files", "small_table.csv",
package = "pointblank"

),
col_types = "TDdcddlc"

),
small_high_file ~ {{ small_table_file }} %>%
dplyr::filter(f == "high")

)

Now it’s easy to access either of these tables via tbl_get(). We can reference the table in the
store by its name (given to the left of the ~).

tbl_get(tbl = "small_table_file", store = store)

A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE high

The second table in the table store is a mutated version of the first. It’s just as easily obtainable
via tbl_get():

tbl_get(tbl = "small_high_file", store = store)

A tibble: 6 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high

from_github 281

4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

The table-prep formulas in the store object could also be used in functions with a tbl argument
(like create_agent() and create_informant()). This is accomplished most easily with the
tbl_source() function.

agent <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_file",
store = store

)
)

informant <-
create_informant(
tbl = ~ tbl_source(
tbl = "small_high_file",
store = store

)
)

Function ID

1-7

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

from_github Specify a file for download from GitHub

Description

The from_github() function is helpful for generating a valid URL that points to a data file in
a public GitHub repository. This function can be used in the file argument of the file_tbl()
function or anywhere else where GitHub URLs for raw user content are needed.

Usage

from_github(file, repo, subdir = NULL, default_branch = "main")

282 from_github

Arguments

file The name of the file to target in a GitHub repository. This can be a path leading
to and including the file. This is combined with any path given in subdir.

repo The GitHub repository address in the format username/repo[/subdir][@ref|#pull|@*release].

subdir A path string representing a subdirectory in the GitHub repository. This is com-
bined with any path components included in file.

default_branch The name of the default branch for the repo. This is usually "main" (the default
used here).

Value

A character vector of length 1 that contains a URL.

Function ID

13-6

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), has_columns(),
stop_if_not()

Examples

A valid URL to a data file in GitHub can be
obtained from the HEAD of the default branch
from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank"
)

The path to the file location can be supplied
fully or partially to `subdir`
from_github(
file = "small_table.csv",
repo = "rstudio/pointblank",
subdir = "inst/data_files"
)

We can use the first call in combination with
`file_tbl()` and `create_agent()`; this
supplies a table-prep formula that gets
a CSV file from the GitHub repository for the
pointblank package
agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank"

game_revenue 283

),
col_types = "TDdcddlc"
)
) %>%
col_vals_gt(a, 0) %>%
interrogate()

The `from_github()` helper function is
pretty powerful and can get at lots of
different files in a repository

A data file from GitHub can be obtained from
a commit at release time
from_github(
file = "inst/extdata/small_table.csv",
repo = "rstudio/pointblank@v0.2.1"
)

A file may also be obtained from a repo at the
point in time of a specific commit (partial or
full SHA-1 hash for the commit can be used)
from_github(
file = "data-raw/small_table.csv",
repo = "rstudio/pointblank@e04a71"
)

A file may also be obtained from an
open pull request
from_github(
file = "data-raw/small_table.csv",
repo = "rstudio/pointblank#248"
)

game_revenue A table with game revenue data

Description

This table is a subset of the sj_all_revenue table from the intendo data package. It’s the first
2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

game_revenue

Format

A tibble with 2,000 rows and 11 variables:

284 game_revenue_info

player_id A character column with unique identifiers for each user/player.

session_id A character column that contains unique identifiers for each player session.

session_start A date-time column that indicates when the session (containing the revenue event)
started.

time A date-time column that indicates exactly when the player purchase (or revenue event) oc-
curred.

item_type A character column that provides the class of the item purchased.

item_name A character column that provides the name of the item purchased.

item_revenue A numeric column with the revenue amounts per item purchased.

session_duration A numeric column that states the length of the session (in minutes) for which
the purchase occurred.

start_day A Date column that provides the date of first login for the player making a purchase.

acquisition A character column that provides the method of acquisition for the player.

country A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table, small_table_sqlite(), specifications

Examples

Here is a glimpse at the data
available in `game_revenue`
dplyr::glimpse(game_revenue)

game_revenue_info A table with metadata for the game_revenue dataset

Description

This table contains metadata for the game_revenue table. The first column (named column) pro-
vides the column names from game_revenue. The second column (info) contains descriptions for
each of the columns in that dataset. This table is in the correct format for use in the info_columns_from_tbl()
function.

Usage

game_revenue_info

get_agent_report 285

Format

A tibble with 11 rows and 2 variables:

column A character column with unique identifiers for each user/player.

info A character column that contains unique identifiers for each player session.

Function ID

14-5

See Also

Other Datasets: game_revenue, small_table, small_table_sqlite(), specifications

Examples

Here is a glimpse at the data
available in `game_revenue_info`
dplyr::glimpse(game_revenue_info)

get_agent_report Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the get_agent_report() func-
tion. The table can be provided in two substantially different forms: as a gt based display table
(the default), or, as a tibble. The amount of fields with intel is different depending on whether
or not the agent performed an interrogation (with the interrogate() function). Basically, before
interrogate() is called, the agent will contain just the validation plan (however many rows it has
depends on how many validation functions were supplied a part of that plan). Post-interrogation,
information on the passing and failing test units is provided, along with indicators on whether cer-
tain failure states were entered (provided they were set through actions). The display table variant
of the agent report, the default form, will have the following columns:

• i (unlabeled): the validation step number.

• STEP: the name of the validation function used for the validation step,

• COLUMNS: the names of the target columns used in the validation step (if applicable).

• VALUES: the values used in the validation step, where applicable; this could be as literal
values, as column names, an expression, etc.

• TBL: indicates whether any there were any changes to the target table just prior to interroga-
tion. A rightward arrow from a small circle indicates that there was no mutation of the table.
An arrow from a circle to a purple square indicates that preconditions were used to modify
the target table. An arrow from a circle to a half-filled circle indicates that the target table has
been segmented.

286 get_agent_report

• EVAL: a symbol that denotes the success of interrogation evaluation for each step. A check-
mark indicates no issues with evaluation. A warning sign indicates that a warning occurred
during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover
over the symbol for details on each condition.

• UNITS: the total number of test units for the validation step

• PASS: on top is the absolute number of passing test units and below that is the fraction of
passing test units over the total number of test units.

• FAIL: on top is the absolute number of failing test units and below that is the fraction of failing
test units over the total number of test units.

• W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset
states appear as dashes, states that are set with thresholds appear as unfilled circles when not
entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and
blue)

• EXT: a column that provides buttons to download data extracts as CSV files for row-based
validation steps having failing test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL,
and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

The ptblank_agent_report can be exported to a standalone HTML document with the export_report()
function.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

• i: the validation step number.

• type: the name of the validation function used for the validation step.

• columns: the names of the target columns used in the validation step (if applicable).

• values: the values used in the validation step, where applicable; for a conjointly() validation
step, this is a listing of all sub-validations.

• precon: indicates whether any there are any preconditions to apply before interrogation and,
if so, the number of statements used.

• active: a logical value that indicates whether a validation step is set to "active" during an
interrogation.

• eval: a character value that denotes the success of interrogation evaluation for each step. A
value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning
occurred during evaluation. The "ERROR" VALUES indicates that evaluation failed due to an
error. With "W+E" both warnings and an error occurred during evaluation.

• units: the total number of test units for the validation step.

• n_pass: the number of passing test units.

• f_pass: the fraction of passing test units.

• W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be
NA for states that are unset.

• extract: an integer value that indicates the number of rows available in a data extract. Will be
NA if no extract is available.

get_agent_report 287

Usage

get_agent_report(
agent,
arrange_by = c("i", "severity"),
keep = c("all", "fail_states"),
display_table = TRUE,
size = "standard",
title = ":default:",
lang = NULL,
locale = NULL

)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

arrange_by Method of arranging the report’s table rows
singl-kw:[i|severity] // default: "i"
A choice to arrange the report table rows by the validation step number ("i", the
default), or, to arrange in descending order by severity of the failure state (with
"severity").

keep Which table rows should be kept?
singl-kw:[all|fail_states] // default: "all"
An option to keep "all" of the report’s table rows (the default), or, keep only
those rows that reflect one or more "fail_states".

display_table Return a display-table report via gt
scalar<logical> // default: TRUE
Should a display table be generated? If TRUE, and if the gt package is installed,
a display table for the report will be shown in the Viewer. If FALSE, or if gt is
not available, then a tibble will be returned.

size Size option for display-table report
scalar<character> // default: "standard"
The size of the display table, which can be either "standard" (the default) or
"small". This only applies to a display table (where display_table = TRUE).

title Title customization options
scalar<character> // default: ":default:"
Options for customizing the title of the report. The default is the keyword
":default:" which produces generic title text that refers to the pointblank
package in the language governed by the lang option. Another keyword option
is ":tbl_name:", and that presents the name of the table as the title for the re-
port. If no title is wanted, then the ":none:" keyword option can be used. Aside
from keyword options, text can be provided for the title and glue::glue() calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a

288 get_agent_report

transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"),
and Dutch ("nl"). This lang option will override any previously set language
setting (e.g., by the create_agent() call).

locale Locale for value formatting
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
value (e.g., by the create_agent() call).

Value

A ptblank_agent_report object if display_table = TRUE or a tibble if display_table = FALSE.

Examples

For the example here, we’ll use a simple table with a single numerical column a.

tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl
#> # A tibble: 4 x 1
#> a
#> <dbl>
#> 1 5
#> 2 7
#> 3 8
#> 4 5

Let’s create an agent and validate that values in column a are always greater than 4.

agent <-
create_agent(
tbl = tbl,
tbl_name = "small_table",
label = "An example."

) %>%

get_agent_report 289

col_vals_gt(columns = a, value = 4) %>%
interrogate()

We can get a tibble-based report from the agent by using get_agent_report() with display_table
= FALSE.

agent %>% get_agent_report(display_table = FALSE)

A tibble: 1 × 14
i type columns values precon active eval units n_pass
<int> <chr> <chr> <chr> <chr> <lgl> <chr> <dbl> <dbl>
1 1 col_va. . . a 4 NA TRUE OK 4 4
. . . with 5 more variables: f_pass <dbl>, W <lgl>, S <lgl>,
N <lgl>, extract <int>

The full-featured display-table-based report can be viewed by printing the agent object, but, we
can get a "ptblank_agent_report" object returned to us when using display_table = TRUE (the
default for get_agent_report).

report <- get_agent_report(agent)

report

What can you do with the report object? Print it at will wherever, and, it can serve as an input to
the export_report() function.

However, the better reason to use get_agent_report() over just printing the agent for display-
table purposes is to make use of the different display options.

The agent report as a gt display table comes in two sizes: "standard" (the default, 875px wide)
and "small" (575px wide). Let’s take a look at the smaller-sized version of the report.

small_report <-
get_agent_report(
agent = agent,
size = "small"

)

small_report

We can use our own title by supplying it to the title argument, or, use a special keyword like
":tbl_name:" to get the table name (set in the create_agent() call) as the title.

report_title <- get_agent_report(agent, title = ":tbl_name:")

report_title

There are more options! You can change the language of the display table with the lang argu-
ment (this overrides the language set in create_agent()), validation steps can be rearranged us-
ing the arrange_by argument, and we can also apply some filtering with the keep argument in
get_agent_report().

290 get_agent_x_list

Function ID

6-2

See Also

Other Interrogate and Report: interrogate()

get_agent_x_list Get the agent’s x-list

Description

The agent’s x-list is a record of information that the agent possesses at any given time. The x-list
will contain the most complete information after an interrogation has taken place (before then, the
data largely reflects the validation plan). The x-list can be constrained to a particular validation step
(by supplying the step number to the i argument), or, we can get the information for all validation
steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable
cornucopia of information.

For an x-list obtained with i specified for a validation step, the following components are available:

• time_start: the time at which the interrogation began (POSIXct [0 or 1])

• time_end: the time at which the interrogation ended (POSIXct [0 or 1])

• label: the optional label given to the agent (chr [1])

• tbl_name: the name of the table object, if available (chr [1])

• tbl_src: the type of table used in the validation (chr [1])

• tbl_src_details: if the table is a database table, this provides further details for the DB
table (chr [1])

• tbl: the table object itself

• col_names: the table’s column names (chr [ncol(tbl)])

• col_types: the table’s column types (chr [ncol(tbl)])

• i: the validation step index (int [1])

• type: the type of validation, value is validation function name (chr [1])

• columns: the columns specified for the validation function (chr [variable length])

• values: the values specified for the validation function (mixed types [variable length])

• briefs: the brief for the validation step in the specified lang (chr [1])

• eval_error, eval_warning: indicates whether the evaluation of the step function, during
interrogation, resulted in an error or a warning (lgl [1])

• capture_stack: a list of captured errors or warnings during step-function evaluation at inter-
rogation time (list [1])

• n: the number of test units for the validation step (num [1])

• n_passed, n_failed: the number of passing and failing test units for the validation step (num
[1])

get_agent_x_list 291

• f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])

• f_failed: the fraction of failing test units for the validation step, n_failed / n (num [1])

• warn, stop, notify: a logical value indicating whether the level of failing test units caused
the corresponding conditions to be entered (lgl [1])

• lang: the two-letter language code that indicates which language should be used for all briefs,
the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one com-
ponents in the x-list will be expanded to the total number of validation steps (these are: i, type,
columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed,
f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components
when i is NULL, which are:

• report_object: a gt table object, which is also presented as the default print method for a
ptblank_agent

• email_object: a blastula email_message object with a default set of components

• report_html: the HTML source for the report_object, provided as a length-one character
vector

• report_html_small: the HTML source for a narrower, more condensed version of report_object,
provided as a length-one character vector; The HTML has inlined styles, making it more suit-
able for email message bodies

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

i A validation step number
scalar<integer> // default: NULL (optional)
The validation step number, which is assigned to each validation step in the
order of invocation. If NULL (the default), the x-list will provide information
for all validation steps. If a valid step number is provided then x-list will have
information pertaining only to that step.

Value

An x_list object.

Examples

Create a simple data frame with a column of numerical values.

292 get_agent_x_list

tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl
#> # A tibble: 4 x 1
#> a
#> <dbl>
#> 1 5
#> 2 7
#> 3 8
#> 4 5

Create an action_levels() list with fractional values for the warn, stop, and notify states.

al <-
action_levels(
warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.345

)

Create an agent (giving it the tbl and the al objects), supply two validation step functions, then
interrogate.

agent <-
create_agent(
tbl = tbl,
actions = al

) %>%
col_vals_gt(columns = a, value = 7) %>%
col_is_numeric(columns = a) %>%
interrogate()

Get the f_passed component of the agent x-list.

x <- get_agent_x_list(agent)

x$f_passed

#> [1] 0.25 1.00

Function ID

8-1

See Also

Other Post-interrogation: all_passed(), get_data_extracts(), get_sundered_data(), write_testthat_file()

get_data_extracts 293

get_data_extracts Collect data extracts from a validation step

Description

In an agent-based workflow (i.e., initiating with create_agent()), after interrogation with interrogate(),
we can extract the row data that didn’t pass row-based validation steps with the get_data_extracts()
function. There is one discrete extract per row-based validation step and the amount of data avail-
able in a particular extract depends on both the fraction of test units that didn’t pass the validation
step and the level of sampling or explicit collection from that set of units. These extracts can
be collected programmatically through get_data_extracts() but they may also be downloaded
as CSV files from the HTML report generated by the agent’s print method or through the use of
get_agent_report().

The availability of data extracts for each row-based validation step depends on whether extract_failed
is set to TRUE within the interrogate() call (it is by default). The amount of fail rows extracted
depends on the collection parameters in interrogate(), and the default behavior is to collect up
to the first 5000 fail rows.

Row-based validation steps are based on those validation functions of the form col_vals_*() and
also include conjointly() and rows_distinct(). Only functions from that combined set of
validation functions can yield data extracts.

Usage

get_data_extracts(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function. It should have had interrogate() called on it, such
that the validation steps were carried out and any sample rows from non-passing
validations could potentially be available in the object.

i A validation step number
scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step by point-
blank in the order of definition. If NULL (the default), all data extract tables will
be provided in a list object.

Value

A list of tables if i is not provided, or, a standalone table if i is given.

294 get_data_extracts

Examples

Create a series of two validation steps focused on testing row values for part of the small_table
object. Use interrogate() right after that.

agent <-
create_agent(
tbl = small_table %>%
dplyr::select(a:f),

label = "`get_data_extracts()`"
) %>%
col_vals_gt(d, value = 1000) %>%
col_vals_between(
columns = c,
left = vars(a), right = vars(d),
na_pass = TRUE

) %>%
interrogate()

Using get_data_extracts() with its defaults returns of a list of tables, where each table is named
after the validation step that has an extract available.

agent %>% get_data_extracts()

$`1`
A tibble: 6 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 8 3-ldm-038 7 284. TRUE low
2 7 1-knw-093 3 843. TRUE high
3 3 5-bce-642 9 838. FALSE high
4 3 5-bce-642 9 838. FALSE high
5 4 2-dmx-010 7 834. TRUE low
6 2 7-dmx-010 8 108. FALSE low
##
$`2`
A tibble: 4 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 6 8-kdg-938 3 2343. TRUE high
2 8 3-ldm-038 7 284. TRUE low
3 7 1-knw-093 3 843. TRUE high
4 4 5-boe-639 2 1036. FALSE low

We can get an extract for a specific step by specifying it in the i argument. Let’s get the failing rows
from the first validation step (the col_vals_gt() one).

agent %>% get_data_extracts(i = 1)

get_informant_report 295

A tibble: 6 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 8 3-ldm-038 7 284. TRUE low
2 7 1-knw-093 3 843. TRUE high
3 3 5-bce-642 9 838. FALSE high
4 3 5-bce-642 9 838. FALSE high
5 4 2-dmx-010 7 834. TRUE low
6 2 7-dmx-010 8 108. FALSE low

Function ID

8-2

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_sundered_data(), write_testthat_file()

get_informant_report Get a table information report from an informant object

Description

We can get a table information report from an informant object that’s generated by the create_informant()
function. The report is provided as a gt based display table. The amount of information shown de-
pends on the extent of that added via the use of the info_*() functions or through direct editing of a
pointblank YAML file (an informant can be written to pointblank YAML with yaml_write(informant = <informant>, ...)).

Usage

get_informant_report(
informant,
size = "standard",
title = ":default:",
lang = NULL,
locale = NULL

)

Arguments

informant The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

296 get_informant_report

size Size option for display-table report
scalar<character> // default: "standard"
The size of the display table, which can be either "standard" (the default, with
a width of 875px), "small" (width of 575px), or, a pixel- or percent-based width
of your choosing (supply an integer value for the width in pixels, or values with
"px" or "%" appended, like "75%", "500px", etc.).

title Title customization options
scalar<character> // default: ":default:"
Options for customizing the title of the report. The default is the keyword
":default:" which produces generic title text that refers to the pointblank
package in the language governed by the lang option. Another keyword option
is ":tbl_name:", and that presents the name of the table as the title for the re-
port. If no title is wanted, then the ":none:" keyword option can be used. Aside
from keyword options, text can be provided for the title and glue::glue() calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for the information report. By default, NULL will create
English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl"). This lang option will override any previously set language set-
ting (e.g., by the create_informant() call).

locale Locale for value formatting
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the information report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
value (e.g., by the create_informant() call).

Value

A gt table object.

Function ID

7-2

See Also

Other Incorporate and Report: incorporate()

get_multiagent_report 297

Examples

Generate an informant object using
the `small_table` dataset
informant <- create_informant(small_table)

This function creates some information
without any extra help by profiling
the supplied table object; it adds
the sections 'table' and columns' and
we can print the object to see the
table information report

Alternatively, we can get the same report
by using `get_informant_report()`
report <- get_informant_report(informant)
class(report)

get_multiagent_report Get a summary report using multiple agents

Description

We can get an informative summary table from a collective of agents by using the get_multiagent_report()
function. Information from multiple agent can be provided in three very forms: (1) the Long Display
(stacked reports), (2) the Wide Display (a comparison report), (3) as a tibble with packed columns.

Usage

get_multiagent_report(
multiagent,
display_table = TRUE,
display_mode = c("long", "wide"),
title = ":default:",
lang = NULL,
locale = NULL

)

Arguments

multiagent A multiagent object of class ptblank_multiagent.

display_table Should a display table be generated? If TRUE (the default) a display table for the
report will be shown in the Viewer. If FALSE then a tibble will be returned.

display_mode If we are getting a display table, should the agent data be presented in a "long"
or "wide" form? The default is "long" but when comparing multiple runs where
the target table is the same it might be preferable to choose "wide".

298 get_multiagent_report

title Options for customizing the title of the report when display_table = TRUE.
The default is the keyword ":default:" which produces generic title text. If
no title is wanted, then the ":none:" keyword option can be used. Another
keyword option is ":tbl_name:", and that presents the name of the table as the
title for the report (this can only be used when display_mode = "long"). Aside
from keyword options, text can be provided for the title and glue::glue() calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for the long or wide report forms. By default, NULL will
preserve any language set in the component reports. The following options will
force the same language across all component reports: English ("en"), French
("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turk-
ish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish
("sv"), and Dutch ("nl").

locale Locale for value formatting
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the long or wide report
forms (according the locale’s rules). Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
values.

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

The Long Display

When displayed as "long" the multiagent report will stack individual agent reports in a single
document in the order of the agents in the multiagent object.

Each validation plan (possibly with interrogation info) will be provided and the output for each is
equivalent to calling get_agent_report() on each of the agents within the multiagent object.

The Wide Display

When displayed as "wide" the multiagent report will show data from individual agents as columns,
with rows standing as validation steps common across the agents.

Each validation step is represented with an icon (standing in for the name of the validation function)
and the associated SHA1 hash. This is a highly trustworthy way for ascertaining which validation
steps are effectively identical across interrogations. This way of organizing the report is beneficial
because different agents may have used different steps and we want to track the validation results
where the validation step doesn’t change but the target table does (i.e., new rows are added, existing
rows are updated, etc.).

get_multiagent_report 299

The single table from this display mode will have the following columns:

• STEP: the SHA1 hash for the validation step, possibly shared among several interrogations.

• subsequent columns: each column beyond STEP represents a separate interrogation from an
agent object. The time stamp for the completion of each interrogation is shown as the column
label.

Examples

Let’s walk through several theoretical data quality analyses of an extremely small table. that table
is called small_table and we can find it as a dataset in this package.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

To set failure limits and signal conditions, we designate proportional failure thresholds to the warn,
stop, and notify states using action_levels().

al <-
action_levels(
warn_at = 0.05,
stop_at = 0.10,
notify_at = 0.20

)

We will create four different agents and have slightly different validation steps in each of them.
In the first, agent_1, eight different validation steps are created and the agent will interrogate the
small_table.

agent_1 <-
create_agent(
tbl = small_table,
label = "An example.",

300 get_multiagent_report

actions = al
) %>%
col_vals_gt(
columns = date_time,
value = vars(date),
na_pass = TRUE

) %>%
col_vals_gt(
columns = b,
value = vars(g),
na_pass = TRUE

) %>%
rows_distinct() %>%
col_vals_equal(
columns = d,
value = vars(d),
na_pass = TRUE

) %>%
col_vals_between(
columns = c,
left = vars(a), right = vars(d)

) %>%
col_vals_not_between(
columns = c,
left = 10, right = 20,
na_pass = TRUE

) %>%
rows_distinct(columns = d, e, f) %>%
col_is_integer(columns = a) %>%
interrogate()

The second agent, agent_2, retains all of the steps of agent_1 and adds two more (the last of which
is inactive).

agent_2 <-
agent_1 %>%
col_exists(columns = date, date_time) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}",
active = FALSE

) %>%
interrogate()

The third agent, agent_3, adds a single validation step, removes the fifth one, and deactivates the
first.

agent_3 <-

get_multiagent_report 301

agent_2 %>%
col_vals_in_set(
columns = f,
set = c("low", "mid", "high")

) %>%
remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, agent_4, reactivates steps 1 and 10, and removes the sixth step.

agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly different from each other, we can still get a combined report of
them by creating a ’multiagent’.

multiagent <-
create_multiagent(
agent_1, agent_2, agent_3, agent_4

)

Calling multiagent in the console prints the multiagent report. But we can generate a "ptblank_multiagent_report"
object with the get_multiagent_report() function and specify options for layout and presenta-
tion.

By default, get_multiagent_report() gives you a long report with agent reports being stacked.
Think of this "long" option as the serial mode of agent reports. However if we want to view
interrogation results of the same table over time, the wide view may be preferable. In this way
we can see whether the results of common validation steps improved or worsened over consecutive
interrogations of the data.

report_wide <-
get_multiagent_report(
multiagent,
display_mode = "wide"

)

report_wide

Function ID

10-3

See Also

Other The multiagent: create_multiagent(), read_disk_multiagent()

302 get_sundered_data

get_sundered_data Sunder the data, splitting it into ’pass’ and ’fail’ pieces

Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset
for something else. The get_sundered_data() function works with an agent object that has intel
(i.e., post interrogate()) and gets either the ’pass’ data piece (rows with no failing test units
across all row-based validation functions), or, the ’fail’ data piece (rows with at least one failing
test unit across the same series of validations). As a final option, we can have emit all the data with
a new column (called .pb_combined) which labels each row as passing or failing across validation
steps. These labels are "pass" and "fail" by default but their values can be easily customized.

Usage

get_sundered_data(
agent,
type = c("pass", "fail", "combined"),
pass_fail = c("pass", "fail"),
id_cols = NULL

)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function. It should have had interrogate() called on it,
such that the validation steps were actually carried out.

type The desired piece of data resulting from the splitting. Options for returning a
single table are "pass" (the default) and "fail". Each of these options return
a single table with, in the "pass" case, only the rows that passed across all
validation steps (i.e., had no failing test units in any part of a row for any vali-
dation step), or, the complementary set of rows in the "fail" case. Providing
NULL returns both of the split data tables in a list (with the names of "pass" and
"fail"). The option "combined" applies a categorical (pass/fail) label (settable
in the pass_fail argument) in a new .pb_combined flag column. For this case
the ordering of rows is fully retained from the input table.

pass_fail A vector for encoding the flag column with ’pass’ and ’fail’ values when type
= "combined". The default is c("pass", "fail") but other options could be
c(TRUE, FALSE), c(1, 0), or c(1L, 0L).

id_cols An optional specification of one or more identifying columns. When taken to-
gether, we can count on this single column or grouping of columns to distin-
guish rows. If the table undergoing validation is not a data frame or tibble, then
columns need to be specified for id_cols.

get_sundered_data 303

Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of
the row-based variety (e.g., the col_vals_*() functions or conjointly(), but not rows_distinct()).
Furthermore, validation steps that experienced evaluation issues during interrogation are not consid-
ered, and, validation steps where active = FALSE will be disregarded. The collection of validation
steps that fulfill the above requirements for sundering are termed in-consideration validation steps.

If using any preconditions for validation steps, we must ensure that all in-consideration validation
steps use the same specified preconditions function. Put another way, we cannot split the target
table using a collection of in-consideration validation steps that use different forms of the input
table.

Value

A list of table objects if type is NULL, or, a single table if a type is given.

Examples

Create a series of two validation steps focused on testing row values for part of the small_table
object. Then, use interrogate() to put the validation plan into action.

agent <-
create_agent(
tbl = small_table %>%
dplyr::select(a:f),

label = "`get_sundered_data()`"
) %>%
col_vals_gt(columns = d, value = 1000) %>%
col_vals_between(
columns = c,
left = vars(a), right = vars(d),
na_pass = TRUE

) %>%
interrogate()

Get the sundered data piece that contains only rows that passed both validation steps (the default
piece). This yields 5 of 13 total rows.

agent %>% get_sundered_data()

A tibble: 5 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 2 1-bcd-345 3 3423. TRUE high
2 3 5-egh-163 8 10000. TRUE low
3 2 5-jdo-903 NA 3892. FALSE mid
4 4 2-dhe-923 4 3291. TRUE mid
5 1 3-dka-303 NA 2230. TRUE high

304 get_sundered_data

Get the complementary data piece: all of those rows that failed either of the two validation steps.
This yields 8 of 13 total rows.

agent %>% get_sundered_data(type = "fail")

A tibble: 8 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 6 8-kdg-938 3 2343. TRUE high
2 8 3-ldm-038 7 284. TRUE low
3 7 1-knw-093 3 843. TRUE high
4 4 5-boe-639 2 1036. FALSE low
5 3 5-bce-642 9 838. FALSE high
6 3 5-bce-642 9 838. FALSE high
7 4 2-dmx-010 7 834. TRUE low
8 2 7-dmx-010 8 108. FALSE low

We can get all of the input data returned with a flag column (called .pb_combined). This is done
by using type = "combined" and that rightmost column will contain "pass" and "fail" values.

agent %>% get_sundered_data(type = "combined")

A tibble: 13 × 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <chr>
1 2 1-bcd-345 3 3423. TRUE high pass
2 3 5-egh-163 8 10000. TRUE low pass
3 6 8-kdg-938 3 2343. TRUE high fail
4 2 5-jdo-903 NA 3892. FALSE mid pass
5 8 3-ldm-038 7 284. TRUE low fail
6 4 2-dhe-923 4 3291. TRUE mid pass
7 7 1-knw-093 3 843. TRUE high fail
8 4 5-boe-639 2 1036. FALSE low fail
9 3 5-bce-642 9 838. FALSE high fail
10 3 5-bce-642 9 838. FALSE high fail
11 4 2-dmx-010 7 834. TRUE low fail
12 2 7-dmx-010 8 108. FALSE low fail
13 1 3-dka-303 NA 2230. TRUE high pass

We can change the "pass" or "fail" text values to another type of coding with the pass_fail
argument. One possibility is TRUE/FALSE.

agent %>%
get_sundered_data(
type = "combined",
pass_fail = c(TRUE, FALSE)

)

get_sundered_data 305

A tibble: 13 × 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <lgl>
1 2 1-bcd-345 3 3423. TRUE high TRUE
2 3 5-egh-163 8 10000. TRUE low TRUE
3 6 8-kdg-938 3 2343. TRUE high FALSE
4 2 5-jdo-903 NA 3892. FALSE mid TRUE
5 8 3-ldm-038 7 284. TRUE low FALSE
6 4 2-dhe-923 4 3291. TRUE mid TRUE
7 7 1-knw-093 3 843. TRUE high FALSE
8 4 5-boe-639 2 1036. FALSE low FALSE
9 3 5-bce-642 9 838. FALSE high FALSE
10 3 5-bce-642 9 838. FALSE high FALSE
11 4 2-dmx-010 7 834. TRUE low FALSE
12 2 7-dmx-010 8 108. FALSE low FALSE
13 1 3-dka-303 NA 2230. TRUE high TRUE

...and using 0 and 1 might be worthwhile in some situations.

agent %>%
get_sundered_data(
type = "combined",
pass_fail = 0:1

)

A tibble: 13 × 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <int>
1 2 1-bcd-345 3 3423. TRUE high 0
2 3 5-egh-163 8 10000. TRUE low 0
3 6 8-kdg-938 3 2343. TRUE high 1
4 2 5-jdo-903 NA 3892. FALSE mid 0
5 8 3-ldm-038 7 284. TRUE low 1
6 4 2-dhe-923 4 3291. TRUE mid 0
7 7 1-knw-093 3 843. TRUE high 1
8 4 5-boe-639 2 1036. FALSE low 1
9 3 5-bce-642 9 838. FALSE high 1
10 3 5-bce-642 9 838. FALSE high 1
11 4 2-dmx-010 7 834. TRUE low 1
12 2 7-dmx-010 8 108. FALSE low 1
13 1 3-dka-303 NA 2230. TRUE high 0

Function ID

8-3

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), write_testthat_file()

306 get_tt_param

get_tt_param Get a parameter value from a summary table

Description

The get_tt_param() function can help you to obtain a single parameter value from a summary ta-
ble generated by the tt_*() functions tt_summary_stats(), tt_string_info(), tt_tbl_dims(),
or tt_tbl_colnames(). The following parameters are to be used depending on the input tbl:

• from tt_summary_stats(): "min", "p05", "q_1", "med", "q_3", "p95", "max", "iqr",
"range"

• from tt_string_info(): "length_mean", "length_min", "length_max"

• from tt_tbl_dims(): "rows", "columns"

• from tt_tbl_colnames(): any integer present in the .param. column

The tt_summary_stats() and tt_string_info() functions will generate summary tables with
columns that mirror the numeric and character columns in their input tables, respectively. For that
reason, a column name must be supplied to the column argument in get_tt_param().

Usage

get_tt_param(tbl, param, column = NULL)

Arguments

tbl Summary table generated by specific transformer functions
obj:<tbl_*> // required
A summary table generated by either of the tt_summary_stats(), tt_string_info(),
tt_tbl_dims(), or tt_tbl_colnames() functions.

param Parameter name
scalar<character> // required
The parameter name associated to the value that is to be gotten. These param-
eter names are always available in the first column (.param.) of a summary
table obtained by tt_summary_stats(), tt_string_info(), tt_tbl_dims(),
or tt_tbl_colnames().

column The target column
scalar<character> // required (in select cases)
The column in the summary table for which the data value should be obtained.
This must be supplied for summary tables generated by tt_summary_stats()
and tt_string_info() (the tt_tbl_dims() and tt_tbl_colnames() func-
tions will always generate a two-column summary table).

Value

A scalar value.

get_tt_param 307

Examples

Get summary statistics for the first quarter of the game_revenue dataset that’s included in the point-
blank package.

stats_tbl <-
game_revenue %>%
tt_time_slice(slice_point = 0.25) %>%
tt_summary_stats()

stats_tbl
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0.02 5.1
#> 2 p05 0.03 11
#> 3 q_1 0.08 17.2
#> 4 med 0.28 28.3
#> 5 q_3 1.37 32
#> 6 p95 40.0 37.1
#> 7 max 143. 41
#> 8 iqr 1.28 14.8
#> 9 range 143. 35.9

Sometimes you need a single value from the table generated by the tt_summary_stats() function.
For that, we can use the get_tt_param() function. So if we wanted to test whether the maximum
session duration during the rest of the time period (the remaining 0.75) is never higher than that of
the first quarter of the year, we can supply a value from stats_tbl to test_col_vals_lte():

game_revenue %>%
tt_time_slice(
slice_point = 0.25,
keep = "right"

) %>%
test_col_vals_lte(
columns = session_duration,
value = get_tt_param(
tbl = stats_tbl,
param = "max",
column = "session_duration"

)
)

#> [1] TRUE

Function ID

12-7

308 has_columns

See Also

Other Table Transformers: tt_string_info(), tt_summary_stats(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

has_columns Determine if one or more columns exist in a table

Description

This utility function can help you easily determine whether a column of a specified name is present
in a table object. This function works well enough on a table object but it can also be used as part of a
formula in any validation function’s active argument. Using active = ~ . %>% has_columns(column_1)
means that the validation step will be inactive if the target table doesn’t contain a column named
column_1. We can also use multiple columns in c(), so having active = ~ . %>% has_columns(c(column_1,
column_2)) in a validation step will make it inactive at interrogate() time unless the columns
column_1 and column_2 are both present.

Usage

has_columns(x, columns)

Arguments

x A data table
obj:<tbl_*> // required
The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark
object.

columns The target columns
<tidy-select> // required
One or more columns or column-selecting expressions. Each element is checked
for a match in the table x.

Value

A length-1 logical vector.

Examples

The small_table dataset in the package has the columns date_time, date, and the a through f
columns.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high

has_columns 309

#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

With has_columns() we can check for column existence by using it directly on the table.

small_table %>% has_columns(columns = date)

[1] TRUE

Multiple column names can be supplied. The following is TRUE because both columns are present
in small_table.

small_table %>% has_columns(columns = c(a, b))

[1] TRUE

It’s possible to use a tidyselect helper as well:

small_table %>% has_columns(columns = c(a, starts_with("b")))

[1] TRUE

Because column h isn’t present, this returns FALSE (all specified columns need to be present to
obtain TRUE).

small_table %>% has_columns(columns = c(a, h))

[1] FALSE

The same holds in the case of tidyselect helpers. Because no columns start with "h", including
starts_with("h") returns FALSE for the entire check.

small_table %>% has_columns(columns = starts_with("h"))
small_table %>% has_columns(columns = c(a, starts_with("h")))

[1] FALSE
[1] FALSE

310 has_columns

The has_columns() function can be useful in expressions that involve the target table, especially
if it is uncertain that the table will contain a column that’s involved in a validation.

In the following agent-based validation, the first two steps will be ’active’ because all columns
checked for in the expressions are present. The third step becomes inactive because column j isn’t
there (without the active statement there we would get an evaluation failure in the agent report).

agent <-
create_agent(
tbl = small_table,
tbl_name = "small_table"

) %>%
col_vals_gt(
columns = c, value = vars(a),
active = ~ . %>% has_columns(c(a, c))

) %>%
col_vals_lt(
columns = h, value = vars(d),
preconditions = ~ . %>% dplyr::mutate(h = d - a),
active = ~ . %>% has_columns(c(a, d))

) %>%
col_is_character(
columns = j,
active = ~ . %>% has_columns(j)

) %>%
interrogate()

Through the agent’s x-list, we can verify that no evaluation error (any evaluation at all, really) had
occurred. The third value, representative of the third validation step, is actually NA instead of FALSE
because the step became inactive.

x_list <- get_agent_x_list(agent = agent)

x_list$eval_warning

[1] FALSE FALSE NA

Function ID

13-2

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), from_github(),
stop_if_not()

incorporate 311

incorporate Given an informant object, update and incorporate table snippets

Description

When the informant object has a number of snippets available (by using info_snippet()) and
the strings to use them (by using the info_*() functions and {<snippet_name>} in the text ele-
ments), the process of incorporating aspects of the table into the info text can occur by using the
incorporate() function. After that, the information will be fully updated (getting the current state
of table dimensions, re-rendering the info text, etc.) and we can print the informant object or use
the get_informant_report() function to see the information report.

Usage

incorporate(informant)

Arguments

informant The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

Value

A ptblank_informant object.

Examples

Take the small_table and assign it to changing_table (we’ll modify it later):

changing_table <- small_table

changing_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high

312 incorporate

#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Use create_informant() to generate an informant object with changing_table given to the tbl
argument with a leading ~ (ensures that the table will be fetched each time it is needed, instead of
being statically stored in the object). We’ll add two snippets with info_snippet(), add information
with the info_columns() and info_section() functions and then use incorporate() to work
the snippets into the info text.

informant <-
create_informant(
tbl = ~ changing_table,
tbl_name = "changing_table",
label = "`informant()` example"

) %>%
info_snippet(
snippet_name = "row_count",
fn = ~ . %>% nrow()

) %>%
info_snippet(
snippet_name = "col_count",
fn = ~ . %>% ncol()

) %>%
info_columns(
columns = a,
info = "In the range of 1 to 10. ((SIMPLE))"

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., `Sys.time()`)."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`. ((CALC))"

) %>%
info_section(
section_name = "rows",
row_count = "There are {row_count} rows available."

) %>%
incorporate()

We can print the resulting object to see the information report.

informant

Let’s modify test_table to give it more rows and an extra column.

info_columns 313

changing_table <-
dplyr::bind_rows(changing_table, changing_table) %>%
dplyr::mutate(h = a + c)

Using incorporate() will cause the snippets to be reprocessed and accordingly the content of the
report will be updated to keep up with the current state of the changing_table.

informant <- informant %>% incorporate()

When printed again, we’ll also see that the row and column counts in the header have been updated
to reflect the new dimensions of the target table. Furthermore, the info text in the ROWS section has
updated text ("There are 26 rows available.").

informant

Function ID

7-1

See Also

Other Incorporate and Report: get_informant_report()

info_columns Add information that focuses on aspects of a data table’s columns

Description

Upon creation of an informant object (with the create_informant() function), there are two sec-
tions containing properties: (1) ’table’ and (2) ’columns’. The ’columns’ section is initialized with
the table’s column names and their types (as _type). Beyond that, it is useful to provide details
about the nature of each column and we can do that with the info_columns() function. A sin-
gle column (or multiple columns) is targeted, and then a series of named arguments (in the form
entry_name = "The *info text*.") serves as additional information for the column or columns.

Usage

info_columns(x, columns, ..., .add = TRUE)

Arguments

x The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

314 info_columns

columns The target columns
vector<character>|vars(<columns>) // required
The column or set of columns to focus on. Can be defined as a column name
in quotes (e.g., "<column_name>"), one or more column names in vars() (e.g.,
vars(<column_name>)), or with a select helper (e.g., starts_with("date")).

... Information entries
<info-text expressions> // required
Information entries as a series of named arguments. The names refer to subsec-
tion titles within COLUMN -> <COLUMN_NAME> and the RHS contains the info text
(informational text that can be written as Markdown and further styled with Text
Tricks).

.add Add to existing info text
scalar<logical> // default: TRUE
Should new text be added to existing text? This is TRUE by default; setting to
FALSE replaces any existing text for a property.

Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text](link url) will get nicely-styled links. Any dates
expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font
variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text
by using: (1) double parentheses around text for a rectangular border as in ((label text)), or (2)
triple parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

• color: <a color value>; (text color)
• background-color: <a color value>; (the text’s background color)

• text-decoration: (overline | line-through | underline);

• text-transform: (uppercase | lowercase | capitalize);

• letter-spacing: <a +/- length value>;

• word-spacing: <a +/- length value>;

• font-style: (normal | italic | oblique);

• font-weight: (normal | bold | 100-900);

• font-variant: (normal | bold | 100-900);

info_columns 315

• border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). The way that information on
table columns is represented in YAML works like this: info text goes into subsections of YAML
keys named for the columns, which are themselves part of the top-level columns key. Here is
an example of how several calls of info_columns() are expressed in R code and how the result
corresponds to the YAML representation.

R statement
informant %>%
info_columns(
columns = date_time,
info = "*info text* 1."

) %>%
info_columns(
columns = date,
info = "*info text* 2."

) %>%
info_columns(
columns = item_count,
info = "*info text* 3. Statistics: {snippet_1}."

) %>%
info_columns(
columns = c(date, date_time),
info = "UTC time."

)

YAML representation
columns:
date_time:
_type: POSIXct, POSIXt
info: '*info text* 1. UTC time.'

date:
_type: Date
info: '*info text* 2. UTC time.'

item_count:
_type: integer
info: '*info text* 3. Statistics: {snippet_1}.'

Subsections represented as column names are automatically generated when creating an informant.
Within these, there can be multiple subsections used for holding info text on each column. The

316 info_columns

subsections used across the different columns needn’t be the same either, the only commonality that
should be enforced is the presence of the _type key (automatically updated at every incorporate()
invocation).

It’s safest to use single quotation marks around any info text if directly editing it in a YAML file.
Note that Markdown formatting and info snippet placeholders (shown here as {snippet_1}, see
info_snippet() for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the
~ followed by a statement that gets the small_table dataset.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

)

We can add info text to describe the table with the various info_*() functions. In this example,
we’ll use info_columns() multiple times to describe some of the columns in the small_table
dataset. Note here that info text calls are additive to the existing content inside of the various
subsections (i.e., the text will be appended and won’t overwrite existing if it lands in the same area).

informant <-
informant %>%
info_columns(
columns = a,
info = "In the range of 1 to 10. ((SIMPLE))"

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., `Sys.time()`)."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`. ((CALC))"

)

Upon printing the informant object, we see the additions made to the ’Columns’ section.

informant

info_columns_from_tbl 317

Function ID

3-2

See Also

Other Information Functions: info_columns_from_tbl(), info_section(), info_snippet(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

info_columns_from_tbl Add column information from another data table

Description

The info_columns_from_tbl() function is a wrapper around the info_columns() function and
is useful if you wish to apply info text to columns where that information already exists in a data
frame (or in some form that can readily be coaxed into a data frame). The form of the input tbl
(the one that contains column metadata) has a few basic requirements:

• the data frame must have two columns

• both columns must be of class character

• the first column should contain column names and the second should contain the info text

Each column that matches across tables (i.e., the tbl and the target table of the informant) will have
a new entry for the "info" property. Empty or missing info text will be pruned from tbl.

Usage

info_columns_from_tbl(x, tbl, .add = TRUE)

Arguments

x The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

tbl Metadata table with column information
obj:<tbl_*> // required
The two-column data frame which contains metadata about the target table in
the informant object.

.add Add to existing info text
scalar<logical> // default: TRUE
Should new text be added to existing text? This is TRUE by default; setting to
FALSE replaces any existing text for the "info" property.

Value

A ptblank_informant object.

318 info_columns_from_tbl

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the
~ followed by a statement that gets the game_revenue dataset.

informant <-
create_informant(
tbl = ~ game_revenue,
tbl_name = "game_revenue",
label = "An example."

)

We can add info text to describe the data in the various columns of the table by using info_columns()
or information in another table (with info_columns_from_tbl()). Here, we’ll do the latter. The
game_revenue_info dataset is included in pointblank and it contains metadata for game_revenue.

game_revenue_info
#> # A tibble: 11 x 2
#> column info
#> <chr> <chr>
#> 1 player_id A `character` column with unique identifiers for each user/~
#> 2 session_id A `character` column that contains unique identifiers for e~
#> 3 session_start A date-time column that indicates when the session (contain~
#> 4 time A date-time column that indicates exactly when the player p~
#> 5 item_type A `character` column that provides the class of the item pu~
#> 6 item_name A `character` column that provides the name of the item pur~
#> 7 item_revenue A `numeric` column with the revenue amounts per item purcha~
#> 8 session_duration A `numeric` column that states the length of the session (i~
#> 9 start_day A `Date` column that provides the date of first login for t~
#> 10 acquisition A `character` column that provides the method of acquisitio~
#> 11 country A `character` column that provides the probable country of ~

The info_columns_from_tbl() function takes a table object where the first column has the column
names and the second contains the info text.

informant <-
informant %>%
info_columns_from_tbl(tbl = game_revenue_info)

Upon printing the informant object, we see the additions made to the ’Columns’ section by the
info_columns_from_tbl(tbl = game_revenue_info) call.

informant

We can continue to add more info text to describe the columns since the process is additive. The
info_columns_from_tbl() function populates the info subsection and any calls of info_columns()
that also target a info subsection will append text. Here, we’ll add content for the item_revenue
and acquisition columns and view the updated report.

info_section 319

informant <-
informant %>%
info_columns(
columns = item_revenue,
info = "Revenue reported in USD."

) %>%
info_columns(
columns = acquisition,
`top list` = "{top5_aq}"

) %>%
info_snippet(
snippet_name = "top5_aq",
fn = snip_list(column = "acquisition")

) %>%
incorporate()

informant

Function ID

3-3

See Also

The info_columns() function, which allows for manual entry of info text.

Other Information Functions: info_columns(), info_section(), info_snippet(), info_tabular(),
snip_highest(), snip_list(), snip_lowest(), snip_stats()

info_section Add information that focuses on some key aspect of the data table

Description

While the info_tabular() and info_columns() functions allow us to add/modify info text for
specific sections, the info_section() makes it possible to add sections of our own choosing and
the information that make sense for those sections. Define a section_name and provide a series
of named arguments (in the form entry_name = "The *info text*.") to build the informational
content for that section.

Usage

info_section(x, section_name, ...)

320 info_section

Arguments

x The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

section_name The section name
scalar<character> // required
The name of the section for which this information pertains.

... Information entries
<info-text expressions> // required
Information entries as a series of named arguments. The names refer to subsec-
tion titles within the section defined as section_name and the RHS is the info
text (informational text that can be written as Markdown and further styled with
Text Tricks).

Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text](link url) will get nicely-styled links. Any dates
expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font
variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text
by using: (1) double parentheses around text for a rectangular border as in ((label text)), or (2)
triple parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

• color: <a color value>; (text color)
• background-color: <a color value>; (the text’s background color)

• text-decoration: (overline | line-through | underline);

• text-transform: (uppercase | lowercase | capitalize);

• letter-spacing: <a +/- length value>;

• word-spacing: <a +/- length value>;

• font-style: (normal | italic | oblique);

• font-weight: (normal | bold | 100-900);

• font-variant: (normal | bold | 100-900);

info_section 321

• border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Extra sections (i.e., neither
the table nor the columns sections) can be generated and filled with info text by using one or
more calls of info_section(). This is how it is expressed in both R code and in the YAML
representation.

R statement
informant %>%
info_section(
section_name = "History",
Changes = "

- Change 1
- Change 2
- Change 3",

`Last Update` = "(2020-10-23) at 3:28 PM."
) %>%
info_section(
section_name = "Additional Notes",
`Notes 1` = "Notes with a {snippet}.",
`Notes 2` = "**Bold notes**."

)

YAML representation
History:
Changes: |2-

- Change 1
- Change 2
- Change 3

Last Update: (2020-10-23) at 3:28 PM.
Additional Notes:
Notes 1: Notes with a {snippet}.
Notes 2: '**Bold notes**.'

Subsections represented as column names are automatically generated when creating an informant.
Within each of the top-level sections (i.e., History and Additional Notes) there can be multiple
subsections used for holding info text.

It’s safest to use single quotation marks around any info text if directly editing it in a YAML
file. Note that Markdown formatting and info snippet placeholders (shown here as {snippet},

322 info_section

see info_snippet() for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the
~ followed by a statement that gets the small_table dataset.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

)

An informant typically has the ’Table’ and ’Columns’ sections. We can also create entirely differ-
ent sections (that follow these) with their own properties using the info_section() function. Let’s
create a subsection in the report called "Notes" and add text to two parts of that: "creation" and
"usage".

informant <-
informant %>%
info_section(
section_name = "Notes",
creation = "Dataset generated on (2020-01-15).",
usage = "`small_table %>% dplyr::glimpse()`"

) %>%
incorporate()

Upon printing the informant object, we see the addition of the ’Notes’ section and its own infor-
mation.

informant

Function ID

3-4

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_snippet(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

info_snippet 323

info_snippet Generate a useful text ’snippet’ from the target table

Description

Getting little snippets of information from a table goes hand-in-hand with mixing those bits of
info with your table info. Call info_snippet() to define a snippet and how you’ll get that from the
target table. The snippet definition is supplied either with a formula, or, with a pointblank-supplied
snip_*() function. So long as you know how to interact with a table and extract information, you
can easily define snippets for a informant object. And once those snippets are defined, you can
insert them into the info text as defined through the other info_*() functions (info_tabular(),
info_columns(), and info_section()). Use curly braces with just the snippet_name inside
(e.g., "This column has {n_cat} categories.").

Usage

info_snippet(x, snippet_name, fn)

Arguments

x The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

snippet_name The snippet name
scalar<character> // required
The name for snippet, which is used for interpolating the result of the snippet
formula into info text defined by an info_*() function.

fn Function for snippet text generation
<function> // required
A formula that obtains a snippet of data from the target table. It’s best to use a
leading dot (.) that stands for the table itself and use pipes to construct a series of
operations to be performed on the table (e.g., ~ . %>% dplyr::pull(column_2)
%>% max(na.rm = TRUE)). So long as the result is a length-1 vector, it’ll likely
be valid for insertion into some info text. Alternatively, a snip_*() function
can be used here (these functions always return a formula that’s suitable for all
types of data sources).

Value

A ptblank_informant object.

Snip functions provided in pointblank

For convenience, there are several snip_*() functions provided in the package that work on column
data from the informant’s target table. These are:

324 info_snippet

• snip_list(): get a list of column categories

• snip_stats(): get an inline statistical summary

• snip_lowest(): get the lowest value from a column

• snip_highest() : get the highest value from a column

As it’s understood what the target table is, only the column in each of these functions is necessary
for obtaining the resultant text.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Snippets are stored in the
YAML representation and here is is how they are expressed in both R code and in the YAML output
(showing both the meta_snippets and columns keys to demonstrate their relationship here).

R statement
informant %>%
info_columns(
columns = date_time,
`Latest Date` = "The latest date is {latest_date}."

) %>%
info_snippet(
snippet_name = "latest_date",
fn = ~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)

) %>%
incorporate()

YAML representation
meta_snippets:
latest_date: ~. %>% dplyr::pull(date) %>% max(na.rm = TRUE)

...
columns:
date_time:
_type: POSIXct, POSIXt
Latest Date: The latest date is {latest_date}.

date:
_type: Date

item_count:
_type: integer

Examples

Take the small_table dataset included in pointblank and assign it to test_table. We’ll modify
it later.

test_table <- small_table

info_snippet 325

Generate an informant object, add two snippets with info_snippet(), add information with some
other info_*() functions and then incorporate() the snippets into the info text. The first snippet
will be made with the expression ~ . %>% nrow() (giving us the number of rows in the dataset) and
the second uses the snip_highest() function with column a (giving us the highest value in that
column).

informant <-
create_informant(
tbl = ~ test_table,
tbl_name = "test_table",
label = "An example."

) %>%
info_snippet(
snippet_name = "row_count",
fn = ~ . %>% nrow()

) %>%
info_snippet(
snippet_name = "max_a",
fn = snip_highest(column = "a")

) %>%
info_columns(
columns = a,
info = "In the range of 1 to {max_a}. ((SIMPLE))"

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., `Sys.time()`)."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`. ((CALC))"

) %>%
info_section(
section_name = "rows",
row_count = "There are {row_count} rows available."

) %>%
incorporate()

We can print the informant object to see the information report.

informant

Let’s modify test_table with some dplyr to give it more rows and an extra column.

test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + c)

326 info_tabular

Using incorporate() on the informant object will cause the snippets to be reprocessed, and, the
info text to be updated.

informant <- informant %>% incorporate()

informant

Function ID

3-5

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

info_tabular Add information that focuses on aspects of the data table as a whole

Description

When an informant object is created with the create_informant() function, it has two starter
sections: (1) ’table’ and (2) ’columns’. The ’table’ section should contain a few properties upon
creation, such as the supplied table name (name) and table dimensions (as _columns and _rows). We
can add more table-based properties with the info_tabular() function. By providing a series of
named arguments (in the form entry_name = "The *info text*."), we can add more information
that makes sense for describing the table as a whole.

Usage

info_tabular(x, ...)

Arguments

x The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the
create_informant() function.

... Information entries
<info-text expressions> // required
Information entries as a series of named arguments. The names refer to subsec-
tion titles within the TABLE section and the values are the info text (informational
text that can be written as Markdown and further styled with Text Tricks).

Value

A ptblank_informant object.

info_tabular 327

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text](link url) will get nicely-styled links. Any dates
expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font
variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text
by using: (1) double parentheses around text for a rectangular border as in ((label text)), or (2)
triple parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

• color: <a color value>; (text color)
• background-color: <a color value>; (the text’s background color)

• text-decoration: (overline | line-through | underline);

• text-transform: (uppercase | lowercase | capitalize);

• letter-spacing: <a +/- length value>;

• word-spacing: <a +/- length value>;

• font-style: (normal | italic | oblique);

• font-weight: (normal | bold | 100-900);

• font-variant: (normal | bold | 100-900);

• border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). When info_tabular() is
represented in YAML, info text goes into subsections of the top-level table key. Here is an ex-
ample of how a call of info_tabular() is expressed in R code and in the corresponding YAML
representation.

R statement:

informant %>%
info_tabular(
section_1 = "*info text* 1.",
`section 2` = "*info text* 2 and {snippet_1}"

)

328 info_tabular

YAML representation:

table:
_columns: 23
_rows: 205.0
_type: tbl_df
section_1: '*info text* 1.'
section 2: '*info text* 2 and {snippet_1}'

Subsection titles as defined in info_tabular() can be set in backticks if they are not syntactically
correct as an argument name without them (e.g., when using spaces, hyphens, etc.).

It’s safest to use single quotation marks around any info text if directly editing it in a YAML file.
Note that Markdown formatting and info snippet placeholders (shown here as {snippet_1}, see
info_snippet() for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the
~ followed by a statement that gets the small_table dataset.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

)

We can add info text to describe the table with the various info_*() functions. In this example,
we’ll use info_tabular() to generally describe the small_table dataset.

informant <-
informant %>%
info_tabular(
`Row Definition` = "A row has randomized values.",
Source = c(
"- From the **pointblank** package.",
"- [https://rstudio.github.io/pointblank/]()"
)

)

Upon printing the informant object, we see the additions made to the ’Table’ section of the report.

informant

interrogate 329

Function ID

3-1

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_snippet(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

interrogate Given an agent that has a validation plan, perform an interrogation

Description

When the agent has all the information on what to do (i.e., a validation plan which is a series of
validation steps), the interrogation process can occur according its plan. After that, the agent will
have gathered intel, and we can use functions like get_agent_report() and all_passed() to
understand how the interrogation went down.

Usage

interrogate(
agent,
extract_failed = TRUE,
extract_tbl_checked = TRUE,
get_first_n = NULL,
sample_n = NULL,
sample_frac = NULL,
sample_limit = 5000,
show_step_label = FALSE,
progress = interactive()

)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

extract_failed Collect failed rows as data extracts
scalar<logical> // default: TRUE
An option to collect rows that didn’t pass a particular validation step. The default
is TRUE and further options allow for fine control of how these rows are collected.

extract_tbl_checked

Collect validation results from each step
scalar<logical> // default: TRUE

330 interrogate

An option to collect processed data frames produced by executing the validation
steps. This information is necessary for some functions (e.g., get_sundered_data()),
but may grow to a large size. To opt out of attaching this data to the agent, set
this argument to FALSE.

get_first_n Get the first n values
scalar<integer> // default: NULL (optional)
If the option to collect non-passing rows is chosen, there is the option here to
collect the first n rows here. Supply the number of rows to extract from the top
of the non-passing rows table (the ordering of data from the original table is
retained).

sample_n Sample n values
scalar<integer> // default: NULL (optional)
If the option to collect non-passing rows is chosen, this option allows for the
sampling of n rows. Supply the number of rows to sample from the non-passing
rows table. If n is greater than the number of non-passing rows, then all the rows
will be returned.

sample_frac Sample a fraction of values
scalar<numeric> // default: NULL (optional)
If the option to collect non-passing rows is chosen, this option allows for the
sampling of a fraction of those rows. Provide a number in the range of 0 and
1. The number of rows to return may be extremely large (and this is especially
when querying remote databases), however, the sample_limit option will apply
a hard limit to the returned rows.

sample_limit Row limit for sampling
scalar<integer> // default: 5000
A value that limits the possible number of rows returned when sampling non-
passing rows using the sample_frac option.

show_step_label

Show step labels in progress
scalar<logical> // default: FALSE
Whether to show the label value of each validation step in the console.

progress Show interrogation progress
scalar<logical> // default: interactive()
Whether to show the progress of an agent’s interrogation in the console. Defaults
to TRUE in interactive sessions.

Value

A ptblank_agent object.

Examples

Create a simple table with two columns of numerical values.

tbl <-
dplyr::tibble(

log4r_step 331

a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)

)

tbl
#> # A tibble: 6 x 2
#> a b
#> <dbl> <dbl>
#> 1 5 7
#> 2 7 1
#> 3 6 0
#> 4 5 0
#> 5 8 0
#> 6 7 3

Validate that values in column a from tbl are always less than 5. Using interrogate() carries out
the validation plan and completes the whole process.

agent <-
create_agent(
tbl = tbl,
label = "`interrogate()` example"

) %>%
col_vals_gt(columns = a, value = 5) %>%
interrogate()

We can print the resulting object to see the validation report.

agent

Function ID

6-1

See Also

Other Interrogate and Report: get_agent_report()

log4r_step Enable logging of failure conditions at the validation step level

Description

The log4r_step() function can be used as an action in the action_levels() function (as a list
component for the fns list). Place a call to this function in every failure condition that should
produce a log (i.e., warn, stop, notify). Only the failure condition with the highest severity for a
given validation step will produce a log entry (skipping failure conditions with lower severity) so
long as the call to log4r_step() is present.

332 log4r_step

Usage

log4r_step(x, message = NULL, append_to = "pb_log_file")

Arguments

x A reference to the x-list object prepared by the agent. This version of the x-list
is the same as that generated via get_agent_x_list(<agent>, i = <step>)
except this version is internally generated and hence only available in an internal
evaluation context.

message The message to use for the log entry. When not provided, a default glue string is
used for the messaging. This is dynamic since the internal glue::glue() call
occurs in the same environment as x, the x-list that’s constrained to the validation
step. The default message, used when message = NULL is the glue string "Step
{x$i} exceeded the {level} failure threshold (f_failed = {x$f_failed})
['{x$type}']". As can be seen, a custom message can be crafted that uses
other elements of the x-list with the {x$<component>} construction.

append_to The file to which log entries at the warn level are appended. This can alterna-
tively be one or more log4r appenders.

Value

Nothing is returned however log files may be written in very specific conditions.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how log4r_step() can be expressed in
R code (within action_levels(), itself inside create_agent()) and in the corresponding YAML
representation.

R statement:

create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = action_levels(
warn_at = 1,
fns = list(
warn = ~ log4r_step(
x, append_to = "example_log"

)
)

)
)

YAML representation:

log4r_step 333

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
warn_count: 1.0
fns:
warn: ~log4r_step(x, append_to = "example_log")

steps: []

Should you need to preview the transformation of an agent to YAML (without any committing
anything to disk), use the yaml_agent_string() function. If you already have a .yml file that
holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent
with yaml_agent_show_exprs().

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to
create an action_levels() list object since this is useful for demonstrating a logging scenario. It
will have a threshold for the warn state, and, an associated function that should be invoked whenever
the warn state is entered. Here, the function call with log4r_step() will be invoked whenever there
is one failing test unit.

al <-
action_levels(
warn_at = 1,
fns = list(
warn = ~ log4r_step(
x, append_to = "example_log"

)
)

)

Within the action_levels()-produced object, it’s important to match things up: notice that warn_at
is given a threshold and the list of functions given to fns has a warn component.

Printing al will show us the settings for the action_levels object:

al
#> -- The `action_levels` settings
#> WARN failure threshold of 1test units.
#> \fns\ ~ log4r_step(x, append_to = "example_log")
#> ----

Let’s create an agent with small_table as the target table. We’ll apply the action_levels object
created above as al, add two validation steps, and then interrogate() the data.

334 read_disk_multiagent

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = al

) %>%
col_vals_gt(columns = d, 300) %>%
col_vals_in_set(columns = f, c("low", "high")) %>%
interrogate()

agent

From the agent report, we can see that both steps have yielded warnings upon interrogation (i.e.,
filled yellow circles in the W column).

What’s not immediately apparent is that when entering the warn state in each validation step during
interrogation, the log4r_step() function call was twice invoked! This generated an "example_log"
file in the working directory (since it was not present before the interrogation) and log entries were
appended to the file. Here are the contents of the file:

WARN [2022-06-28 10:06:01] Step 1 exceeded the WARN failure threshold
(f_failed = 0.15385) ['col_vals_gt']

WARN [2022-06-28 10:06:01] Step 2 exceeded the WARN failure threshold
(f_failed = 0.15385) ['col_vals_in_set']

Function ID

5-1

read_disk_multiagent Read pointblank agents stored on disk as a multiagent

Description

An agent or informant can be written to disk with the x_write_disk() function. While useful
for later retrieving the stored agent with x_read_disk() it’s also possible to read a series of on-
disk agents with the read_disk_multiagent() function, which creates a ptblank_multiagent
object. A multiagent object can also be generated via the create_multiagent() function but is
less convenient to use if one is just using agents that have been previously written to disk.

Usage

read_disk_multiagent(filenames = NULL, pattern = NULL, path = NULL)

remove_steps 335

Arguments

filenames File names
vector<character> // default: NULL (optional)

The names of files (holding agent objects) that were previously written by x_write_disk().

pattern Regex pattern
scalar<character> // default: NULL (optional)

A regex pattern for accessing saved-to-disk agent files located in a directory
(specified in the path argument).

path File path
scalar<character> // default: NULL (optional)

A path to a collection of files. This is either optional in the case that files are
specified in filenames (the path combined with all filenames), or, required
when providing a pattern for file names.

Value

A ptblank_multiagent object.

Function ID

10-2

See Also

Other The multiagent: create_multiagent(), get_multiagent_report()

remove_steps Remove one or more of an agent’s validation steps

Description

Validation steps can be removed from an agent object through use of the remove_steps() function.
This is useful, for instance, when getting an agent from disk (via the x_read_disk() function)
and omitting one or more steps from the agent’s validation plan. Please note that when removing
validation steps all stored data extracts will be removed from the agent.

Usage

remove_steps(agent, i = NULL)

336 remove_steps

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

i A validation step number
scalar<integer> // default: NULL (optional)
The validation step number, which is assigned to each validation step in the order
of definition. If NULL (the default) then step removal won’t occur by index.

Value

A ptblank_agent object.

A ptblank_agent object.

Function ID

9-7

See Also

Instead of removal, the deactivate_steps() function will simply change the active status of one
or more validation steps to FALSE (and activate_steps() will do the opposite).

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), set_tbl(),
x_read_disk(), x_write_disk()

Examples

Create an agent that has the
`small_table` object as the
target table, add a few
validation steps, and then use
`interrogate()`
agent_1 <-

create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example."

) %>%
col_exists(columns = date) %>%
col_vals_regex(

columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]"

) %>%
interrogate()

The second validation step has
been determined to be unneeded and
is to be removed; this can be done

rows_complete 337

by using `remove_steps()` with the
agent object
agent_2 <-

agent_1 %>%
remove_steps(i = 2) %>%
interrogate()

rows_complete Are row data complete?

Description

The rows_complete() validation function, the expect_rows_complete() expectation function,
and the test_rows_complete() test function all check whether rows contain any NA/NULL values
(optionally constrained to a selection of specified columns). The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. As a validation step or as an
expectation, this will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

rows_complete(
x,
columns = tidyselect::everything(),
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_rows_complete(
object,
columns = tidyselect::everything(),
preconditions = NULL,
threshold = 1

)

test_rows_complete(
object,
columns = tidyselect::everything(),
preconditions = NULL,
threshold = 1

)

338 rows_complete

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
<tidy-select> // default: everything()
A column-selecting expression, as one would use inside dplyr::select().
Specifies the set of column(s) for which the completeness of rows is checked.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

rows_complete 339

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

340 rows_complete

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

rows_complete 341

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. This is especially true when x is a table object because, otherwise, nothing
happens. Using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good
choices depending on the situation (the first produces a warning when a quarter of the total test units
fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When rows_complete() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of rows_complete() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
rows_complete(
columns = c(a, b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),

342 rows_complete

label = "The `rows_complete()` step.",
active = FALSE

)

YAML representation:

steps:
- rows_complete:

columns: c(a, b)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `rows_complete()` step.
active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking
for unique values across a subset of columns. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns of numerical values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 8, 3),
c = c(1, 1, 1, 3, 3, 3)

)

tbl
#> # A tibble: 6 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3
#> 5 8 8 3
#> 6 7 3 3

A: Using an agent with validation functions and then interrogate():
Validate that when considering only data in columns a and b, there are only complete rows (i.e.,
all rows have no NA values).

rows_complete 343

agent <-
create_agent(tbl = tbl) %>%
rows_complete(columns = c(a, b)) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
rows_complete(columns = c(a, b)) %>%
dplyr::pull(a)

#> [1] 5 7 6 5 8 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_rows_complete(tbl, columns = c(a, b))

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_rows_complete(tbl, columns = c(a, b))
#> [1] TRUE

Function ID

2-21

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_distinct(),
serially(), specially(), tbl_match()

344 rows_distinct

rows_distinct Are row data distinct?

Description

The rows_distinct() validation function, the expect_rows_distinct() expectation function,
and the test_rows_distinct() test function all check whether row values (optionally constrained
to a selection of specified columns) are, when taken as a complete unit, distinct from all other units
in the table. The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. As a validation step or as an expectation, this will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

rows_distinct(
x,
columns = tidyselect::everything(),
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_rows_distinct(
object,
columns = tidyselect::everything(),
preconditions = NULL,
threshold = 1

)

test_rows_distinct(
object,
columns = tidyselect::everything(),
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

rows_distinct 345

columns The target columns
<tidy-select> // default: everything()
A column-selecting expression, as one would use inside dplyr::select().
Specifies the set of column(s) for which the distinctness of rows is checked.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the

346 rows_distinct

preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)

rows_distinct 347

– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold

348 rows_distinct

level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. This is especially true when x is a table object because, otherwise, nothing
happens. Using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good
choices depending on the situation (the first produces a warning when a quarter of the total test units
fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.col}": The current column name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When rows_distinct() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of rows_distinct() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
rows_distinct(
columns = c(a, b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `rows_distinct()` step.",
active = FALSE

)

YAML representation:

rows_distinct 349

steps:
- rows_distinct:

columns: c(a, b)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `rows_distinct()` step.
active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking
for unique values across a subset of columns. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns of numerical values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 8, 3),
c = c(1, 1, 1, 3, 3, 3)

)

tbl
#> # A tibble: 6 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3
#> 5 8 8 3
#> 6 7 3 3

A: Using an agent with validation functions and then interrogate():
Validate that when considering only data in columns a and b, there are no duplicate rows (i.e., all
rows are distinct).

agent <-
create_agent(tbl = tbl) %>%
rows_distinct(columns = c(a, b)) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

350 row_count_match

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
rows_distinct(columns = c(a, b)) %>%
dplyr::pull(a)

#> [1] 5 7 6 5 8 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_rows_distinct(tbl, columns = c(a, b))

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_rows_distinct(tbl, columns = c(a, b))
#> [1] TRUE

Function ID

2-20

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(),
serially(), specially(), tbl_match()

row_count_match Does the row count match that of a different table?

Description

The row_count_match() validation function, the expect_row_count_match() expectation func-
tion, and the test_row_count_match() test function all check whether the row count in the target
table matches that of a comparison table. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table. As a validation step or as an expectation, there is
a single test unit that hinges on whether the row counts for the two tables are the same (after any
preconditions have been applied).

row_count_match 351

Usage

row_count_match(
x,
count,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE,
tbl_compare = NULL

)

expect_row_count_match(
object,
count,
preconditions = NULL,
threshold = 1,
tbl_compare = NULL

)

test_row_count_match(
object,
count,
preconditions = NULL,
threshold = 1,
tbl_compare = NULL

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

count The count comparison
scalar<numeric|integer>|obj:<tbl_*> // required
Either a literal value for the number of rows, or, a table to compare against the
target table in terms of row count values. If supplying a comparison table, it
can either be a table object such as a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, a table-prep formula (~ <tbl reading code>)
or a function (function() <tbl reading code>) can be used to lazily read in
the comparison table at interrogation time.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with

352 row_count_match

the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation

row_count_match 353

step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

tbl_compare Deprecated Comparison table
obj:<tbl_*> // default: NULL (optional)
The tbl_compare argument is deprecated. Instead, use count.

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

354 row_count_match

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some
operation on the target table before the row count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table
and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

row_count_match 355

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When row_count_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of row_count_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
row_count_match(
count = ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `row_count_match()` step.",
active = FALSE

)

YAML representation:

356 row_count_match

steps:
- row_count_match:

count: ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `row_count_match()` step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns and four rows of values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)

)

tbl
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

Create a second table which is quite different but has the same number of rows as tbl.

tbl_2 <-
dplyr::tibble(
e = c("a", NA, "a", "c"),
f = c(2.6, 1.2, 0, NA)

row_count_match 357

)

tbl_2
#> # A tibble: 4 x 2
#> e f
#> <chr> <dbl>
#> 1 a 2.6
#> 2 <NA> 1.2
#> 3 a 0
#> 4 c NA

A: Using an agent with validation functions and then interrogate():
Validate that the count of rows in the target table (tbl) matches that of the comparison table
(tbl_2).

agent <-
create_agent(tbl = tbl) %>%
row_count_match(count = tbl_2) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% row_count_match(count = tbl_2)
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_row_count_match(tbl, count = tbl_2)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_row_count_match(count = 4)
#> [1] TRUE

358 scan_data

Function ID

2-31

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()

scan_data Thoroughly scan a table to better understand it

Description

Generate an HTML report that scours the input table data. Before calling up an agent to validate the
data, it’s a good idea to understand the data with some level of precision. Make this the initial step
of a well-balanced data quality reporting workflow. The reporting output contains several sections
to make everything more digestible, and these are:

Overview Table dimensions, duplicate row counts, column types, and reproducibility information

Variables A summary for each table variable and further statistics and summaries depending on
the variable type

Interactions A matrix plot that shows interactions between variables

Correlations A set of correlation matrix plots for numerical variables

Missing Values A summary figure that shows the degree of missingness across variables

Sample A table that provides the head and tail rows of the dataset

The resulting object can be printed to make it viewable in the RStudio Viewer. It’s also a "shiny.tag.list"
object and so can be integrated in R Markdown HTML output or in Shiny applications. If you need
the output HTML, it’s to export that to a file with the export_report() function.

Usage

scan_data(
tbl,
sections = "OVICMS",
navbar = TRUE,
width = NULL,
lang = NULL,
locale = NULL

)

scan_data 359

Arguments

tbl A data table
obj:<tbl_*> // required
The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark
object.

sections Sections to include
scalar<character> // default: "OVICMS"
The sections to include in the finalized Table Scan report. A string with key
characters representing section names is required here. The default string is
"OVICMS" wherein each letter stands for the following sections in their default
order: "O": "overview"; "V": "variables"; "I": "interactions"; "C":
"correlations"; "M": "missing"; and "S": "sample". This string can be
comprised of less characters and the order can be changed to suit the desired
layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the
"interactions" and "correlations" sections are currently excluded.

navbar Include navigation in HTML report
scalar<logical> // default: TRUE
Should there be a navigation bar anchored to the top of the report page?

width Width option for HTML report
scalar<integer> // default: NULL (optional)
An optional fixed width (in pixels) for the HTML report. By default, no fixed
width is applied.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for label text in the report. By default, NULL will cre-
ate English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl").

locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the report according the lo-
cale’s rules. Examples include "en_US" for English (United States) and "fr_FR"
for French (France); more simply, this can be a language identifier without a
country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A ptblank_tbl_scan object.

Examples

Get an HTML document that describes all of the data in the dplyr::storms dataset.

tbl_scan <- scan_data(tbl = dplyr::storms)

360 serially

Function ID

1-1

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

serially Run several tests and a final validation in a serial manner

Description

The serially() validation function allows for a series of tests to run in sequence before either
culminating in a final validation step or simply exiting the series. This construction allows for pre-
testing that may make sense before a validation step. For example, there may be situations where it’s
vital to check a column type before performing a validation on the same column (since having the
wrong type can result in an evaluation error for the subsequent validation). Another serial workflow
might entail having a bundle of checks in a prescribed order and, if all pass, then the goal of this
testing has been achieved (e.g., checking if a table matches another through a series of increasingly
specific tests).

A series as specified inside serially() is composed with a listing of calls, and we would draw
upon test functions (T) to describe tests and optionally provide a finalizing call with a validation
function (V). The following constraints apply:

• there must be at least one test function in the series (T -> V is good, V is not)

• there can only be one validation function call, V; it’s optional but, if included, it must be
placed at the end (T -> T -> V is good, these sequences are bad: (1) T -> V -> T, (2) T -> T
-> V -> V)

• a validation function call (V), if included, mustn’t itself yield multiple validation steps (this
may happen when providing multiple columns or any segments)

Here’s an example of how to arrange expressions:

~ test_col_exists(., columns = count),
~ test_col_is_numeric(., columns = count),
~ col_vals_gt(., columns = count, value = 2)

This series concentrates on the column called count and first checks whether the column exists,
then checks if that column is numeric, and then finally validates whether all values in the column
are greater than 2.

Note that in the above listing of calls, the . stands in for the target table and is always necessary
here. Also important is that all test_*() functions have a threshold argument that is set to 1 by
default. Should you need to bump up the threshold value it can be changed to a different integer
value (as an absolute threshold of failing test units) or a decimal value between 0 and 1 (serving as
a fractional threshold of failing test units).

serially 361

Usage

serially(
x,
...,
.list = list2(...),
preconditions = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_serially(
object,
...,
.list = list2(...),
preconditions = NULL,
threshold = 1

)

test_serially(
object,
...,
.list = list2(...),
preconditions = NULL,
threshold = 1

)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

... Test/validation expressions
<test/validation expressions> // required (or, use .list)
A collection one-sided formulas that consist of test_*() function calls (e.g.,
test_col_vals_between(), etc.) arranged in sequence of intended interro-
gation order. Typically, validations up until the final one would have some
threshold value set (default is 1) for short circuiting within the series. A finish-
ing validation function call (e.g., col_vals_increasing(), etc.) can optionally
be inserted at the end of the series, serving as a validation step that only un-
dergoes interrogation if the prior tests adequately pass. An example of this is
~ test_column_exists(., a), ~ col_vals_not_null(., a)).

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)

362 serially

Allows for the use of a list as an input alternative to

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided

serially 363

R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

364 serially

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

serially 365

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When serially() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of serially() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
serially(
~ test_col_vals_lt(., columns = a, value = 8),
~ test_col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b),
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `serially()` step.",
active = FALSE

)

YAML representation:

steps:
- serially:

fns:
- ~test_col_vals_lt(., columns = a, value = 8)
- ~test_col_vals_gt(., columns = c, value = vars(a))
- ~col_vals_not_null(., columns = b)
preconditions: ~. %>% dplyr::filter(a < 10)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `serially()` step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a
very basic table but it’ll be more useful when explaining things later.

tbl <-

366 serially

dplyr::tibble(
a = c(5, 2, 6),
b = c(6, 4, 9),
c = c(1, 2, 3)

)

tbl
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 6 1
#> 2 2 4 2
#> 3 6 9 3

A: Using an agent with validation functions and then interrogate():
The serially() function can be set up to perform a series of tests and then perform a validation
(only if all tests pass). Here, we are going to (1) test whether columns a and b are numeric,
(2) check that both don’t have any NA values, and (3) perform a finalizing validation that checks
whether values in b are greater than values in a. We’ll determine if this validation has any failing
test units (there are 4 tests and a final validation).

agent_1 <-
create_agent(tbl = tbl) %>%
serially(
~ test_col_is_numeric(., columns = c(a, b)),
~ test_col_vals_not_null(., columns = c(a, b)),
~ col_vals_gt(., columns = b, value = vars(a))
) %>%

interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
What’s going on? All four of the tests passed and so the final validation occurred. There were no
failing test units in that either!
The final validation is optional and so here is a variation where only the serial tests are performed.

agent_2 <-
create_agent(tbl = tbl) %>%
serially(
~ test_col_is_numeric(., columns = c(a, b)),
~ test_col_vals_not_null(., columns = c(a, b))

) %>%
interrogate()

Everything is good here too:

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

serially 367

tbl %>%
serially(
~ test_col_is_numeric(., columns = c(a, b)),
~ test_col_vals_not_null(., columns = c(a, b)),
~ col_vals_gt(., columns = b, value = vars(a))

)
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 6 1
#> 2 2 4 2
#> 3 6 9 3

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_serially(
tbl,
~ test_col_is_numeric(., columns = c(a, b)),
~ test_col_vals_not_null(., columns = c(a, b)),
~ col_vals_gt(., columns = b, value = vars(a))

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>%
test_serially(
~ test_col_is_numeric(., columns = c(a, b)),
~ test_col_vals_not_null(., columns = c(a, b)),
~ col_vals_gt(., columns = b, value = vars(a))

)
#> [1] TRUE

Function ID

2-35

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(),
rows_distinct(), specially(), tbl_match()

368 set_tbl

set_tbl Set a data table to an agent or an informant

Description

Setting a data table to an agent or an informant with set_tbl() replaces any associated table (a
data frame, a tibble, objects of class tbl_dbi or tbl_spark).

Usage

set_tbl(x, tbl, tbl_name = NULL, label = NULL)

Arguments

x A pointblank agent or informant object
obj:<ptblank_agent|ptblank_informant> // required
An agent object of class ptblank_agent, or, an informant of class ptblank_informant.

tbl Table or expression for reading in one
obj:<tbl_*>|<tbl reading expression> // required
The input table for the agent or the informant. This can be a data frame, a
tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression
can be supplied to serve as instructions on how to retrieve the target table at
interrogation- or incorporation-time. There are two ways to specify an associ-
ation to a target table: (1) as a table-prep formula, which is a right-hand side
(RHS) formula expression (e.g., ~ { <tbl reading code>}), or (2) as a func-
tion (e.g., function() { <tbl reading code>}).

tbl_name A table name
scalar<character> // default: NULL (optional)
A optional name to assign to the new input table object. If no value is provided,
a name will be generated based on whatever information is available.

label An optional label for reporting
scalar<character> // default: NULL (optional)
An optional label for the validation plan or information report. If no value is
provided then any existing label will be retained.

Examples

Set proportional failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(

warn_at = 0.10,
stop_at = 0.25,

notify_at = 0.35
)

small_table 369

Create an agent that has small_table set as the target table via tbl. Apply the actions, add some
validation steps and then interrogate the data.

agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example.",
actions = al

) %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
interrogate()

Replace the agent’s association to small_table with a mutated version of it (one that removes
duplicate rows). Then, interrogate the new target table.

agent_2 <-
agent_1 %>%
set_tbl(
tbl = small_table %>% dplyr::distinct()

) %>%
interrogate()

Function ID

9-4

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
x_read_disk(), x_write_disk()

small_table A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing
the functions from pointblank. Rows 9 and 10 are exact duplicates. The c column contains two NA
values.

370 small_table_sqlite

Usage

small_table

Format

A tibble with 13 rows and 8 variables:

date_time A date-time column (of the POSIXct class) with dates that correspond exactly to those
in the date column. Time values are somewhat randomized but all ’seconds’ values are 00.

date A Date column with dates from 2016-01-04 to 2016-01-30.

a An integer column with values ranging from 1 to 8.

b A character column with values that adhere to a common pattern.

c An integer column with values ranging from 2 to 9. Contains two NA values.

d A numeric column with values ranging from 108 to 10000.

e A logical column.

f A character column with "low", "mid", and "high" values.

Function ID

14-1

See Also

Other Datasets: game_revenue, game_revenue_info, small_table_sqlite(), specifications

Examples

Here is a glimpse at the data
available in `small_table`
dplyr::glimpse(small_table)

small_table_sqlite An SQLite version of the small_table dataset

Description

The small_table_sqlite() function creates an SQLite, tbl_dbi version of the small_table
dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can
be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage

small_table_sqlite()

snip_highest 371

Function ID

14-2

See Also

Other Datasets: game_revenue, game_revenue_info, small_table, specifications

Examples

Use `small_table_sqlite()` to
create an SQLite version of the
`small_table` table
#
small_table_sqlite <- small_table_sqlite()

snip_highest A fn for info_snippet(): get the highest value from a column

Description

The snip_highest() function can be used as an info_snippet() function (i.e., provided to fn)
to get the highest numerical, time value, or alphabetical value from a column in the target table.

Usage

snip_highest(column)

Arguments

column The target column
scalar<character> // required
The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_highest() (giving
us a method to get the highest value in column a); define a location for the snippet result in { } and
then incorporate() the snippet into the info text. Note here that the order of the info_columns()
and info_snippet() calls doesn’t matter.

372 snip_list

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

) %>%
info_columns(
columns = a,
`Highest Value` = "Highest value is {highest_a}."

) %>%
info_snippet(
snippet_name = "highest_a",
fn = snip_highest(column = "a")

) %>%
incorporate()

We can print the informant object to see the information report.

informant

Function ID

3-9

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_snippet(), info_tabular(), snip_list(), snip_lowest(), snip_stats()

snip_list A fn for info_snippet(): get a list of column categories

Description

The snip_list() function can be used as an info_snippet() function (i.e., provided to fn) to get
a catalog list from a table column. You can limit the of items in that list with the limit value.

Usage

snip_list(
column,
limit = 5,
sorting = c("inorder", "infreq", "inseq"),
reverse = FALSE,
sep = ",",
and_or = NULL,
oxford = TRUE,

snip_list 373

as_code = TRUE,
quot_str = NULL,
na_rm = FALSE,
lang = NULL

)

Arguments

column The target column
scalar<character> // required
The name of the column that contains the target values.

limit Limit for list length
scalar<integer> // default: 5
A limit of items put into the generated list. The returned text will state the
remaining number of items beyond the limit.

sorting Type of sorting within list
singl-kw:[inorder|infreq|inseq] // default: "inorder"
A keyword used to designate the type of sorting to use for the list. The three
options are "inorder" (the default), "infreq", and "inseq". With "inorder",
distinct items are listed in the order in which they first appear. Using "infreq"
orders the items by the decreasing frequency of each item. The "inseq" option
applies an alphanumeric sorting to the distinct list items.

reverse Reversal of list order
scalar<logical> // default: FALSE
An option to reverse the ordering of list items. By default, this is FALSE but
using TRUE will reverse the items before applying the limit.

sep Separator text for list
scalar<character> // default: ","
The separator to use between list items. By default, this is a comma.

and_or Use of ’and’ or ’or’ within list
scalar<character> // default: NULL (optional)
The type of conjunction to use between the final and penultimate list items
(should the item length be below the limit value). If NULL (the default) is used,
then the ’and’ conjunction will be used. Alternatively, the following keywords
can be used: "and", "or", or an empty string (for no conjunction at all).

oxford Usage of oxford comma
scalar<logical> // default: TRUE
Whether to use an Oxford comma under certain conditions.

as_code Treat items as code
scalar<logical> // default: TRUE
Should each list item appear in a ’code font’ (i.e., as monospaced text)? By
default this is TRUE. Using FALSE keeps all list items in the same font as the rest
of the information report.

quot_str Set items in double quotes
scalar<logical> // default: NULL (optional)

374 snip_list

An option for whether list items should be set in double quotes. If NULL (the
default), the quotation marks are mainly associated with list items derived from
character or factor values; numbers, dates, and logical values won’t have
quotation marks. We can explicitly use quotations (or not) with either TRUE or
FALSE here.

na_rm Remove NA values from list
scalar<logical> // default: FALSE
An option for whether NA values should be counted as an item in the list.

lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for any joining words (from the and_or option) or addi-
tional words in the generated list string. By default, NULL will use whichever
lang setting is available in the parent informant object (this is settable in the
create_informant() lang argument). If specified here as an override, the lan-
guage options are English ("en"), French ("fr"), German ("de"), Italian ("it"),
Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian
("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_list() (giving us
a method to get a distinct list of column values for column f). Define a location for the snippet
result in { } and then incorporate() the snippet into the info text. Note here that the order of the
info_columns() and info_snippet() calls doesn’t matter.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

) %>%
info_columns(
columns = f,
`Items` = "This column contains {values_f}."

) %>%
info_snippet(
snippet_name = "values_f",
fn = snip_list(column = "f")

) %>%
incorporate()

We can print the informant object to see the information report.

informant

snip_lowest 375

Function ID

3-6

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_lowest(), snip_stats()

snip_lowest A fn for info_snippet(): get the lowest value from a column

Description

The snip_lowest() function can be used as an info_snippet() function (i.e., provided to fn) to
get the lowest numerical, time value, or alphabetical value from a column in the target table.

Usage

snip_lowest(column)

Arguments

column The target column
scalar<character> // required
The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_lowest() (giving us
a method to get the lowest value in column a). Define a location for the snippet result in { } and
then incorporate() the snippet into the info text. Note here that the order of the info_columns()
and info_snippet() calls doesn’t matter.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

) %>%
info_columns(
columns = a,
`Lowest Value` = "Lowest value is {lowest_a}."

) %>%

376 snip_stats

info_snippet(
snippet_name = "lowest_a",
fn = snip_lowest(column = "a")

) %>%
incorporate()

We can print the informant object to see the information report.

informant

Function ID

3-8

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_stats()

snip_stats A fn for info_snippet(): get an inline statistical summary

Description

The snip_stats() function can be used as an info_snippet() function (i.e., provided to fn) to
produce a five- or seven-number statistical summary. This inline summary works well within a
paragraph of text and can help in describing the distribution of numerical values in a column.

For a given column, three different types of inline statistical summaries can be provided:

1. a five-number summary ("5num"): minimum, Q1, median, Q3, maximum

2. a seven-number summary ("7num"): P2, P9, Q1, median, Q3, P91, P98

3. Bowley’s seven-figure summary ("bowley"): minimum, P10, Q1, median, Q3, P90, maximum

Usage

snip_stats(column, type = c("5num", "7num", "bowley"))

Arguments

column The target column
scalar<character> // required
The name of the column that contains the target values.

type Type of statistical summary
singl-kw:[5num|7num|bowley] // default: "5num"
The type of summary. By default, the "5num" keyword is used to generate a five-
number summary. Two other options provide seven-number summaries: "7num"
and "bowley".

specially 377

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_stats() (giving us a
method to get some summary stats for column d). Define a location for the snippet result in { } and
then incorporate() the snippet into the info text. Note here that the order of the info_columns()
and info_snippet() calls doesn’t matter.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "An example."

) %>%
info_columns(
columns = d,
`Stats` = "Stats (fivenum): {stats_d}."

) %>%
info_snippet(
snippet_name = "stats_d",
fn = snip_stats(column = "d")

) %>%
incorporate()

We can print the informant object to see the information report.

informant

Function ID

3-7

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_lowest()

specially Perform a specialized validation with a user-defined function

378 specially

Description

The specially() validation function allows for custom validation with a function that you provide.
The major proviso for the provided function is that it must either return a logical vector or a table
where the final column is logical. The function will operate on the table object, or, because you can
do whatever you like, it could also operate on other types of objects. To do this, you can transform
the input table in preconditions or inject an entirely different object there. During interrogation,
there won’t be any checks to ensure that the data is a table object.

Usage

specially(
x,
fn,
preconditions = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_specially(object, fn, preconditions = NULL, threshold = 1)

test_specially(object, fn, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

fn Specialized validation function
<function> // required
A function that performs the specialized validation on the data. It must either
return a logical vector or a table where the last column is a logical column.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

specially 379

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

380 specially

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way. Within specially(),
because this function is special, there won’t be internal checking as to whether the preconditions-
based output is a table.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

specially 381

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When specially() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of specially() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
specially(
fn = function(x) { ... },
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `specially()` step.",
active = FALSE

)

YAML representation:

382 specially

steps:
- specially:

fn: function(x) { ... }
preconditions: ~. %>% dplyr::filter(a < 10)
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `specially()` step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a
very basic table but it’ll be more useful when explaining things later.

tbl <-
dplyr::tibble(
a = c(5, 2, 6),
b = c(3, 4, 6),
c = c(9, 8, 7)

)

tbl
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

A: Using an agent with validation functions and then interrogate():
Validate that the target table has exactly three rows. This single validation with specially()
has 1 test unit since the function executed on x (the target table) results in a logical vector with a
length of 1. We’ll determine if this validation has any failing test units (there is 1 test unit).

agent <-
create_agent(tbl = tbl) %>%
specially(fn = function(x) nrow(x) == 3) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

specially 383

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% specially(fn = function(x) nrow(x) == 3)
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_specially(tbl, fn = function(x) nrow(x) == 3)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_specially(fn = function(x) nrow(x) == 3)
#> [1] TRUE

Variations:
We can do more complex things with specially() and its variants.
Check the class of the target table.

tbl %>%
test_specially(
fn = function(x) {
inherits(x, "data.frame")

}
)

#> [1] TRUE

Check that the number of rows in the target table is less than small_table.

tbl %>%
test_specially(
fn = function(x) {
nrow(x) < nrow(small_table)

}
)

#> [1] TRUE

Check that all numbers across all numeric column are less than 10.

384 specially

tbl %>%
test_specially(
fn = function(x) {
(x %>%

dplyr::select(where(is.numeric)) %>%
unlist()

) < 10
}

)
#> [1] TRUE

Check that all values in column c are greater than b and greater than a (in each row) and always
less than 10. This creates a table with the new column d which is a logical column (that is used as
the evaluation of test units).

tbl %>%
test_specially(
fn = function(x) {
x %>%
dplyr::mutate(
d = c > b & c > a & c < 10

)
}

)
#> [1] TRUE

Check that the game_revenue table (which is not the target table) has exactly 2000 rows.

tbl %>%
test_specially(
fn = function(x) {
nrow(game_revenue) == 2000

}
)

#> [1] TRUE

Function ID

2-36

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(),
rows_distinct(), serially(), tbl_match()

specifications 385

specifications A table containing data pertaining to various specifications

Description

The specifications dataset is useful for testing the col_vals_within_spec(), test_col_vals_within_spec(),
and expect_col_vals_within_spec() functions. For each column, holding character values for
different specifications, rows 1-5 contain valid values, the 6th row is an NA value, and the final two
values (rows 7 and 8) are invalid. Different specification (spec) keywords apply to each of columns
when validating with any of the aforementioned functions.

Usage

specifications

Format

A tibble with 8 rows and 12 variables:

isbn_numbers ISBN-13 numbers; can be validated with the "isbn" specification.

vin_numbers VIN numbers (identifiers for motor vehicles); can be validated with the "vin" spec-
ification.

zip_codes Postal codes for the U.S.; can be validated with the "postal[USA]" specification or its
"zip" alias.

credit_card_numbers Credit card numbers; can be validated with the "credit_card" specifica-
tion or the "cc" alias.

iban_austria IBAN numbers for Austrian accounts; can be validated with the "iban[AUT]" spec-
ification.

swift_numbers Swift-BIC numbers; can be validated with the "swift" specification.

phone_numbers Phone numbers; can be validated with the "phone" specification.

email_addresses Email addresses; can be validated with the "email" specification.

urls URLs; can be validated with the "url" specification.

ipv4_addresses IPv4 addresses; can be validated with the "ipv4" specification

ipv6_addresses IPv6 addresses; can be validated with the "ipv6" specification

mac_addresses MAC addresses; can be validated with the "mac" specification

Function ID

14-3

See Also

Other Datasets: game_revenue, game_revenue_info, small_table, small_table_sqlite()

386 stock_msg_footer

Examples

Here is a glimpse at the data
available in `specifications`
dplyr::glimpse(specifications)

stock_msg_body Provide simple email message body components: body

Description

The stock_msg_body() function simply provides some stock text for an email message sent via
email_blast() or obtained as a standalone object through email_create().

Usage

stock_msg_body()

Value

Text suitable for the msg_body argument of email_blast() and email_create().

Function ID

4-3

See Also

Other Emailing: email_blast(), email_create(), stock_msg_footer()

stock_msg_footer Provide simple email message body components: footer

Description

The stock_msg_footer() function simply provides some stock text for an email message sent via
email_blast() or obtained as a standalone object through email_create().

Usage

stock_msg_footer()

Value

Text suitable for the msg_footer argument of email_blast() and email_create().

stop_if_not 387

Function ID

4-4

See Also

Other Emailing: email_blast(), email_create(), stock_msg_body()

stop_if_not A specialized version of stopifnot() for pointblank:
stop_if_not()

Description

This variation of stopifnot() works well as a standalone replacement for stopifnot() but is also
customized for use in validation checks in R Markdown documents where pointblank is loaded and
validate_rmd() is invoked. Using stop_if_not() in a code chunk where the validate = TRUE
option is set will yield the correct reporting of successes and failures whereas stopifnot() does
not.

Usage

stop_if_not(...)

Arguments

... R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in ... are TRUE.

Function ID

13-5

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), from_github(),
has_columns()

388 tbl_get

Examples

This checks whether the number of
rows in `small_table` is greater
than `10`
stop_if_not(nrow(small_table) > 10)

This will stop for sure: there
isn't a `time` column in `small_table`
(but there are the `date_time` and
`date` columns)
stop_if_not("time" %in% colnames(small_table))

You're not bound to using tabular
data here, any statements that
evaluate to logical vectors will work
stop_if_not(1 < 20:25 - 18)

tbl_get Obtain a materialized table via a table store

Description

The tbl_get() function gives us the means to materialize a table that has an entry in a table store
(i.e., has a table-prep formula with a unique name). The table store that is used for this can be
in the form of a tbl_store object (created with the tbl_store() function) or an on-disk YAML
representation of a table store (created by using yaml_write() with a tbl_store object).

Should you want a table-prep formula from a table store to use as a value for tbl (in create_agent(),
create_informant(), or set_tbl()), then have a look at the tbl_source() function.

Usage

tbl_get(tbl, store = NULL)

Arguments

tbl The table to retrieve from a table store. This table could be identified by its
name (e.g., tbl = "large_table") or by supplying a reference using a subset
(with $) of the tbl_store object (e.g., tbl = store$large_table). If using
the latter method then nothing needs to be supplied to store.

store Either a table store object created by the tbl_store() function or a path to a
table store YAML file created by yaml_write().

Value

A table object.

tbl_get 389

Examples

Define a tbl_store object by adding several table-prep formulas in tbl_store().

store <-
tbl_store(
small_table_duck ~ db_tbl(
table = small_table,
dbname = ":memory:",
dbtype = "duckdb"

),
~ db_tbl(
table = "rna",
dbname = "pfmegrnargs",
dbtype = "postgres",
host = "hh-pgsql-public.ebi.ac.uk",
port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")

),
sml_table ~ pointblank::small_table

)

Once this object is available, we can access the tables named: "small_table_duck", "rna", and
"sml_table". Let’s check that the "rna" table is accessible through tbl_get():

tbl_get(
tbl = "rna",
store = store

)

Source: table<rna> [?? x 9]
Database: postgres [reader@hh-pgsql-public.ebi.ac.uk:5432/pfmegrnargs]
id upi timestamp userstamp crc64 len seq_short
<int64> <chr> <dttm> <chr> <chr> <int> <chr>
1 24583872 URS000177. . . 2019-12-02 13:26:08 rnacen C380. . . 511 ATTGAACG. . .
2 24583873 URS000177. . . 2019-12-02 13:26:08 rnacen BC42. . . 390 ATGGGCGA. . .
3 24583874 URS000177. . . 2019-12-02 13:26:08 rnacen 19A5. . . 422 CTACGGGA. . .
4 24583875 URS000177. . . 2019-12-02 13:26:08 rnacen 66E1. . . 534 AGGGTTCG. . .
5 24583876 URS000177. . . 2019-12-02 13:26:08 rnacen CC8F. . . 252 TACGTAGG. . .
6 24583877 URS000177. . . 2019-12-02 13:26:08 rnacen 19E4. . . 413 ATGGGCGA. . .
7 24583878 URS000177. . . 2019-12-02 13:26:08 rnacen AE91. . . 253 TACGAAGG. . .
8 24583879 URS000177. . . 2019-12-02 13:26:08 rnacen E21A. . . 304 CAGCAGTA. . .
9 24583880 URS000177. . . 2019-12-02 13:26:08 rnacen 1AA7. . . 460 CCTACGGG. . .
10 24583881 URS000177. . . 2019-12-02 13:26:08 rnacen 2046. . . 440 CCTACGGG. . .
. . . with more rows, and 2 more variables: seq_long <chr>, md5 <chr>

An alternative method for getting the same table materialized is by using $ to get the formula of
choice from tbls and passing that to tbl_get(). The benefit of this is that we can use autocom-
pletion to show us what’s available in the table store (i.e., appears after typing the $).

390 tbl_match

store$small_table_duck %>% tbl_get()

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
. . . with more rows

Function ID

1-10

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_source(), tbl_store(), validate_rmd()

tbl_match Does the target table match a comparison table?

Description

The tbl_match() validation function, the expect_tbl_match() expectation function, and the
test_tbl_match() test function all check whether the target table’s composition matches that of
a comparison table. The validation function can be used directly on a data table or with an agent
object (technically, a ptblank_agent object) whereas the expectation and test functions can only
be used with a data table. The types of data tables that can be used include data frames, tibbles,
database tables (tbl_dbi), and Spark DataFrames (tbl_spark). As a validation step or as an ex-
pectation, there is a single test unit that hinges on whether the two tables are the same (after any
preconditions have been applied).

Usage

tbl_match(
x,
tbl_compare,
preconditions = NULL,

tbl_match 391

segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

Arguments

x A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

tbl_compare A data table for comparison
obj:<tbl_*> // required
A table to compare against the target table. This can either be a table object,
a table-prep formula. This can be a table object such as a data frame, a tibble,
a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula
(~ <tbl reading code>) or a function (function() <tbl reading code>)
can be used to lazily read in the table at interrogation time.

preconditions Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)

392 tbl_match

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold

tbl_match 393

value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

• data frames (data.frame) and tibbles (tbl_df)

• Spark DataFrames (tbl_spark)

• the following database tables (tbl_dbi):

– PostgreSQL tables (using the RPostgres::Postgres() as driver)
– MySQL tables (with RMySQL::MySQL())
– Microsoft SQL Server tables (via odbc)
– BigQuery tables (using bigrquery::bigquery())
– DuckDB tables (through duckdb::duckdb())
– SQLite (with RSQLite::SQLite())

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some
operation on the target table before the comparison takes place. Using preconditions can be
useful at times since since we can develop a large validation plan with a single target table and
make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great

394 tbl_match

if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

• "{.step}": The validation step name

• "{.seg_col}": The current segment’s column name

• "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When tbl_match() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.

tbl_match 395

Here is an example of how a complex call of tbl_match() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
tbl_match(
tbl_compare = ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `tbl_match()` step.",
active = FALSE

)

YAML representation:

steps:
- tbl_match:

tbl_compare: ~ file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"
)

)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2

label: The `tbl_match()` step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns and four rows of values.

396 tbl_match

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)

)

tbl
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

Create a second table which is the same as tbl.

tbl_2 <-
dplyr::tibble(
a = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)

)

tbl_2
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

A: Using an agent with validation functions and then interrogate():
Validate that the target table (tbl) and the comparison table (tbl_2) are equivalent in terms of
content.

agent <-
create_agent(tbl = tbl) %>%
tbl_match(tbl_compare = tbl_2) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl_source 397

tbl %>% tbl_match(tbl_compare = tbl_2)
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_tbl_match(tbl, tbl_compare = tbl_2)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_tbl_match(tbl_compare = tbl_2)
#> [1] TRUE

Function ID

2-33

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(),
rows_distinct(), serially(), specially()

tbl_source Obtain a table-prep formula from a table store

Description

The tbl_source() function provides a convenient means to access a table-prep formula from either
a tbl_store object or a table store YAML file (which can be created with the yaml_write() func-
tion). A call to tbl_source() is most useful as an input to the tbl argument of create_agent(),
create_informant(), or set_tbl().

Should you need to obtain the table itself (that is generated via the table-prep formula), then the
tbl_get() function should be used for that.

398 tbl_source

Usage

tbl_source(tbl, store = NULL)

Arguments

tbl The table name associated with a table-prep formula. This is part of the table
store. This table could be identified by its name (e.g., tbl = "large_table")
or by supplying a reference using a subset (with $) of the tbl_store object (e.g.,
tbl = store$large_table). If using the latter method then nothing needs to be
supplied to store.

store Either a table store object created by the tbl_store() function or a path to a
table store YAML file created by yaml_write().

Value

A table-prep formula.

Examples

Let’s create a tbl_store object by giving two table-prep formulas to tbl_store().

store <-
tbl_store(
small_table_duck ~ db_tbl(
table = small_table,
dbname = ":memory:",
dbtype = "duckdb"

),
sml_table ~ pointblank::small_table

)

We can pass a table-prep formula to create_agent() via tbl_source(), add some validation
steps, and interrogate the table shortly thereafter.

agent_1 <-
create_agent(
tbl = ~ tbl_source("sml_table", store),
label = "`tbl_source()` example",
actions = action_levels(warn_at = 0.10)

) %>%
col_exists(columns = c(date, date_time)) %>%
interrogate()

The agent_1 object can be printed to see the validation report in the Viewer.

agent_1

tbl_store 399

The tbl_store object can be transformed to YAML with the yaml_write() function. The follow-
ing statement writes the tbl_store.yml file by default (but a different name could be used with the
filename argument):

yaml_write(store)

Let’s modify the agent’s target to point to the table labeled as "sml_table" in the YAML represen-
tation of the tbl_store.

agent_2 <-
agent_1 %>%
set_tbl(
~ tbl_source(

tbl = "sml_table",
store = "tbl_store.yml"

)
)

We can likewise write the agent to a YAML file with yaml_write() (writes to agent-sml_table.yml
by default but the filename allows for any filename you want).

yaml_write(agent_2)

Now that both the agent and the associated table store are present as on-disk YAML, interrogations
can be done by using yaml_agent_interrogate().

agent <- yaml_agent_interrogate(filename = "agent-sml_table.yml")

Function ID

1-9

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_store(), validate_rmd()

tbl_store Define a store of tables with table-prep formulas: a table store

400 tbl_store

Description

It can be useful to set up all the data sources you need and just draw from them when necessary. This
upfront configuration with tbl_store() lets us define the methods for obtaining tabular data from
mixed sources (e.g., database tables, tables generated from flat files, etc.) and provide identifiers for
these data preparation procedures.

What results from this work is a convenient way to materialize tables with tbl_get(). We can
also get any table-prep formula from the table store with tbl_source(). The content of a table-
prep formulas can involve reading a table from a location, or, it can involve data transformation.
One can imagine scenarios where we might (1) procure several mutated variations of the same
source table, (2) generate a table using disparate data sources, or (3) filter the rows of a database
table according to the system time. Another nice aspect of organizing table-prep formulas in a
single object is supplying it to the tbl argument of create_agent() or create_informant()
via $ notation (e.g, create_agent(tbl = <tbl_store>$<name>)) or with tbl_source() (e.g.,
create_agent(tbl = ~ tbl_source("<name>", <tbl_store>))).

Usage

tbl_store(..., .list = list2(...), .init = NULL)

Arguments

... Expressions that contain table-prep formulas and table names for data retrieval.
Two-sided formulas (e.g, <LHS> ~ <RHS>) are to be used, where the left-hand
side is an identifier and the right-hand contains a statement that obtains a table
(i.e., the table-prep formula). If the LHS is omitted then an identifier will be
generated for you.

.list Allows for the use of a list as an input alternative to

.init We can optionally provide an initialization statement (in a one-sided formula)
that should be executed whenever any of tables in the table store are obtained.
This is useful, for instance, for including a library() call that can be executed
before any table-prep formulas in

Value

A tbl_store object that contains table-prep formulas.

YAML

A pointblank table store can be written to YAML with yaml_write() and the resulting YAML
can be used in several ways. The ideal scenario is to have pointblank agents and informants
also in YAML form. This way the agent and informant can refer to the table store YAML (via
tbl_source()), and, the processing of both agents and informants can be performed with yaml_agent_interrogate()
and yaml_informant_incorporate(). With the following R code, a table store with two table-
prep formulas is generated and written to YAML (if no filename is given then the YAML is written
to "tbl_store.yml").

R statement for generating the "tbl_store.yml" file:

tbl_store 401

tbl_store(
tbl_duckdb ~ db_tbl(small_table, dbname = ":memory:", dbtype = "duckdb"),
sml_table_high ~ small_table %>% dplyr::filter(f == "high"),
.init = ~ library(tidyverse)

) %>%
yaml_write()

YAML representation ("tbl_store.yml"):

type: tbl_store
tbls:
tbl_duckdb: ~ db_tbl(small_table, dbname = ":memory:", dbtype = "duckdb")
sml_table_high: ~ small_table %>% dplyr::filter(f == "high")

init: ~library(tidyverse)

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R
session (with the tbl_get() function. For example, the sml_table_high table can be obtained by
using tbl_get("sml_table_high", "tbl_store.yml"). To get an agent to check this prepared
data periodically, then the following example with tbl_source() will be useful:

R code to generate agent that checks sml_table_high and writing the agent to YAML:

create_agent(
tbl = ~ tbl_source("sml_table_high", "tbl_store.yml"),
label = "An example that uses a table store.",
actions = action_levels(warn_at = 0.10)

) %>%
col_exists(c(date, date_time)) %>%
write_yaml()

The YAML representation ("agent-sml_table_high.yml"):

tbl: ~ tbl_source("sml_table_high", "tbl_store.yml")
tbl_name: sml_table_high
label: An example that uses a table store.
actions:
warn_fraction: 0.1

locale: en
steps:
- col_exists:
columns: c(date, date_time)

Now, whenever the sml_table_high table needs to be validated, it can be done with yaml_agent_interrogate()
(e.g., yaml_agent_interrogate("agent-sml_table_high.yml")).

402 tbl_store

Examples

Creating an in-memory table store and adding table-prep formulas:
The table store provides a way to get the tables we need fairly easily. Think of an identifier for
the table you’d like and then provide the code necessary to obtain that table. Then repeat as many
times as you like!
Here we’ll define two tables that can be materialized later: tbl_duckdb (an in-memory DuckDB
database table with pointblank’s small_table dataset) and sml_table_high (a filtered version
of tbl_duckdb):

store_1 <-
tbl_store(
tbl_duckdb ~
db_tbl(
pointblank::small_table,
dbname = ":memory:",
dbtype = "duckdb"

),
sml_table_high ~
db_tbl(
pointblank::small_table,
dbname = ":memory:",
dbtype = "duckdb"

) %>%
dplyr::filter(f == "high")

)

We can see what’s in the table store store_1 by printing it out:

store_1

-- The `table_store` table-prep formulas
1 tbl_duckdb // ~ db_tbl(pointblank::small_table, dbname = ":memory:",
dbtype = "duckdb")
2 sml_table_high // ~ db_tbl(pointblank::small_table, dbname = ":memory:",
dbtype = "duckdb") %>% dplyr::filter(f == "high")

It’s good to check that the tables can be obtained without error. We can do this with the tbl_get()
function. With that function, we need to supply the given name of the table-prep formula (in
quotes) and the table store object.

tbl_get(tbl = "tbl_duckdb", store = store_1)

Source: table<pointblank::small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high

tbl_store 403

4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
. . . with more rows

tbl_get(tbl = "sml_table_high", store = store_1)

Source: lazy query [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

We can shorten the tbl_store() statement with some syntax that pointblank provides. The
sml_table_high table-prep is simply a transformation of tbl_duckdb, so, we can use {{ tbl_duckdb
}} in place of the repeated statement. Additionally, we can provide a library() call to the .init
argument of tbl_store() so that dplyr is available (thus allowing us to use filter(...) instead
of dplyr::filter(...)). Here is the revised tbl_store() call:

store_2 <-
tbl_store(
tbl_duckdb ~
db_tbl(
pointblank::small_table,
dbname = ":memory:",
dbtype = "duckdb"

),
sml_table_high ~
{{ tbl_duckdb }} %>%
filter(f == "high"),

.init = ~ library(tidyverse)
)

Printing the table store store_2 now shows that we used an .init statement:

store_2

-- The `table_store` table-prep formulas
1 tbl_duckdb // ~ db_tbl(pointblank::small_table, dbname = ":memory:",
dbtype = "duckdb")
2 sml_table_high // ~ {{tbl_duckdb}} %>% filter(f == "high")

404 tbl_store

INIT // ~library(tidyverse)

Checking again with tbl_get() should provide the same tables as before:

tbl_get(tbl = "tbl_duckdb", store = store_2)

Source: table<pointblank::small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
. . . with more rows

tbl_get(tbl = "sml_table_high", store = store_2)

Source: lazy query [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Using a table store in a data validation workflow:
Define a tbl_store object by adding table-prep formulas inside the tbl_store() call.

store_3 <-
tbl_store(
small_table_duck ~ db_tbl(
table = small_table,
dbname = ":memory:",
dbtype = "duckdb"

),
~ db_tbl(
table = "rna",
dbname = "pfmegrnargs",
dbtype = "postgres",
host = "hh-pgsql-public.ebi.ac.uk",

tbl_store 405

port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")

),
all_revenue ~ db_tbl(
table = file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo",
subdir = "data-large"

)
),
dbname = ":memory:",
dbtype = "duckdb"

),
sml_table ~ pointblank::small_table

)

Let’s get a summary of what’s in the table store store_3 through printing:

store_3

-- The `table_store` table-prep formulas
1 small_table_duck // ~ db_tbl(table = small_table, dbname = ":memory:",
dbtype = "duckdb")
2 rna // ~db_tbl(table = "rna", dbname = "pfmegrnargs", dbtype =
"postgres", host = "hh-pgsql-public.ebi.ac.uk", port = 5432, user =
I("reader"), password = I("NWDMCE5xdipIjRrp"))
3 all_revenue // ~ db_tbl(table = file_tbl(file = from_github(file =
"sj_all_revenue_large.rds", repo = "rich-iannone/intendo", subdir =
"data-large")), dbname = ":memory:", dbtype = "duckdb")
4 sml_table // ~ pointblank::small_table

Once this object is available, you can check that the table of interest is produced to your specifi-
cation with the tbl_get() function.

tbl_get(
tbl = "small_table_duck",
store = store_3

)

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

406 tbl_store

6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
. . . with more rows

Another way to get the same table materialized is by using $ to get the entry of choice for
tbl_get().

store_3$small_table_duck %>% tbl_get()

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
. . . with more rows

Creating an agent is easy when all table-prep formulas are encapsulated in a tbl_store object.
Use $ notation to pass the appropriate procedure for reading a table to the tbl argument.

agent_1 <-
create_agent(
tbl = store_3$small_table_duck

)

There are other ways to use the table store to assign a target table to an agent, like using the
tbl_source() function (which extracts the table-prep formula from the table store).

agent_2 <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck",
store = store_3
)

)

Writing a table store to a YAML file:
The table store can be moved to YAML with yaml_write and the tbl_source() call could then
refer to that on-disk table store. Let’s do that YAML conversion.

yaml_write(store_3)

tt_string_info 407

The above writes the tbl_store.yml file (by not providing a filename this default filename is
chosen).
It can be convenient to read table-prep formulas from a YAML file that’s a table store. To achieve
this, we can modify the tbl_source() statement in the create_agent() call so that store refers
to the on-disk YAML file.

agent_3 <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck",
store = "tbl_store.yml"

)
)

Function ID

1-8

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), validate_rmd()

tt_string_info Table Transformer: obtain a summary table for string columns

Description

With any table object, you can produce a summary table that is scoped to string-based columns.
The output summary table will have a leading column called ".param." with labels for each of the
three rows, each corresponding to the following pieces of information pertaining to string length:

1. Mean String Length ("length_mean")

2. Minimum String Length ("length_min")

3. Maximum String Length ("length_max")

Only string data from the input table will generate columns in the output table. Column names from
the input will be used in the output, preserving order as well.

Usage

tt_string_info(tbl)

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

408 tt_string_info

Value

A tibble object.

Examples

Get string information for the string-based columns in the game_revenue dataset that is included in
the pointblank package.

tt_string_info(tbl = game_revenue)
#> # A tibble: 3 x 7
#> .param. player_id session_id item_type item_name acquisition country
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 length_mean 15 24 2.22 7.35 7.97 8.53
#> 2 length_min 15 24 2 5 5 5
#> 3 length_max 15 24 3 11 14 14

Ensure that player_id and session_id values always have the same fixed numbers of characters
(15 and 24, respectively) throughout the table.

tt_string_info(tbl = game_revenue) %>%
col_vals_equal(
columns = player_id,
value = 15

) %>%
col_vals_equal(
columns = session_id,
value = 24

)
#> # A tibble: 3 x 7
#> .param. player_id session_id item_type item_name acquisition country
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 length_mean 15 24 2.22 7.35 7.97 8.53
#> 2 length_min 15 24 2 5 5 5
#> 3 length_max 15 24 3 11 14 14

We see data, and not an error, so both validations were successful!

Let’s use a tt_string_info()-transformed table with the test_col_vals_lte() to check that the
maximum string length in column f of the small_table dataset is no greater than 4.

tt_string_info(tbl = small_table) %>%
test_col_vals_lte(
columns = f,
value = 4

)
#> [1] TRUE

Function ID

12-2

tt_summary_stats 409

See Also

Other Table Transformers: get_tt_param(), tt_summary_stats(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

tt_summary_stats Table Transformer: obtain a summary stats table for numeric columns

Description

With any table object, you can produce a summary table that is scoped to the numeric column
values. The output summary table will have a leading column called ".param." with labels for
each of the nine rows, each corresponding to the following summary statistics:

1. Minimum ("min")

2. 5th Percentile ("p05")

3. 1st Quartile ("q_1")

4. Median ("med")

5. 3rd Quartile ("q_3")

6. 95th Percentile ("p95")

7. Maximum ("max")

8. Interquartile Range ("iqr")

9. Range ("range")

Only numerical data from the input table will generate columns in the output table. Column names
from the input will be used in the output, preserving order as well.

Usage

tt_summary_stats(tbl)

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

410 tt_summary_stats

Examples

Get summary statistics for the game_revenue dataset that is included in the pointblank package.

tt_summary_stats(tbl = game_revenue)
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0 3.2
#> 2 p05 0.02 8.2
#> 3 q_1 0.09 18.5
#> 4 med 0.38 26.5
#> 5 q_3 1.25 33.8
#> 6 p95 22.0 39.5
#> 7 max 143. 41
#> 8 iqr 1.16 15.3
#> 9 range 143. 37.8

Table transformers work great in conjunction with validation functions. Let’s ensure that the maxi-
mum revenue for individual purchases in the game_revenue table is less than $150.

tt_summary_stats(tbl = game_revenue) %>%
col_vals_lt(
columns = item_revenue,
value = 150,
segments = .param. ~ "max"

)
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0 3.2
#> 2 p05 0.02 8.2
#> 3 q_1 0.09 18.5
#> 4 med 0.38 26.5
#> 5 q_3 1.25 33.8
#> 6 p95 22.0 39.5
#> 7 max 143. 41
#> 8 iqr 1.16 15.3
#> 9 range 143. 37.8

We see data, and not an error, so the validation was successful!

Let’s do another: for in-app purchases in the game_revenue table, check that the median revenue is
somewhere between $8 and $12.

game_revenue %>%
dplyr::filter(item_type == "iap") %>%
tt_summary_stats() %>%
col_vals_between(

tt_summary_stats 411

columns = item_revenue,
left = 8, right = 12,
segments = .param. ~ "med"

)
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0.4 3.2
#> 2 p05 1.39 5.99
#> 3 q_1 4.49 14.0
#> 4 med 10.5 22.6
#> 5 q_3 20.3 30.6
#> 6 p95 66.0 38.8
#> 7 max 143. 41
#> 8 iqr 15.8 16.7
#> 9 range 143. 37.8

We can get more creative with this transformer. Why not use a transformed table in a validation
plan? While performing validations of the game_revenue table with an agent we can include the
same revenue check as above by using tt_summary_stats() in the preconditions argument.
This transforms the target table into a summary table for the validation step. The final step of the
transformation in preconditions is a dplyr::filter() step that isolates the row of the median
statistic.

agent <-
create_agent(
tbl = game_revenue,
tbl_name = "game_revenue",
label = "`tt_summary_stats()` example.",
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)
) %>%
rows_complete() %>%
rows_distinct() %>%
col_vals_between(
columns = item_revenue,
left = 8, right = 12,
preconditions = ~ . %>%
dplyr::filter(item_type == "iap") %>%
tt_summary_stats() %>%
dplyr::filter(.param. == "med")

) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of

412 tt_tbl_colnames

validation report. Take note of the final step (STEP 3) as it shows the entry that corresponds to the
col_vals_between() validation step that uses the summary stats table as its target.

Function ID

12-1

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

tt_tbl_colnames Table Transformer: get a table’s column names

Description

With any table object, you can produce a summary table that contains table’s column names. The
output summary table will have two columns and as many rows as there are columns in the input
table. The first column is the ".param." column, which is an integer-based column containing the
indices of the columns from the input table. The second column, "value", contains the column
names from the input table.

Usage

tt_tbl_colnames(tbl)

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

Examples

Get the column names of the game_revenue dataset that is included in the pointblank package.

tt_tbl_colnames(tbl = game_revenue)
#> # A tibble: 11 x 2
#> .param. value
#> <int> <chr>
#> 1 1 player_id
#> 2 2 session_id

tt_tbl_colnames 413

#> 3 3 session_start
#> 4 4 time
#> 5 5 item_type
#> 6 6 item_name
#> 7 7 item_revenue
#> 8 8 session_duration
#> 9 9 start_day
#> 10 10 acquisition
#> 11 11 country

This output table is useful when you want to validate the column names of the table. Here, we check
that game_revenue table, included in the pointblank package, has certain column names present
with test_col_vals_make_subset().

tt_tbl_colnames(tbl = game_revenue) %>%
test_col_vals_make_subset(
columns = value,
set = c("acquisition", "country")

)
#> [1] TRUE

We can check to see whether the column names in the specifications table are all less than
15 characters in length. For this, we would use the combination of tt_tbl_colnames(), then
tt_string_info(), and finally test_col_vals_lt() to perform the test.

specifications %>%
tt_tbl_colnames() %>%
tt_string_info() %>%
test_col_vals_lt(
columns = value,
value = 15

)
#> [1] FALSE

This returned FALSE and this is because the column name credit_card_numbers is 16 characters
long.

Function ID

12-4

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

414 tt_tbl_dims

tt_tbl_dims Table Transformer: get the dimensions of a table

Description

With any table object, you can produce a summary table that contains nothing more than the table’s
dimensions: the number of rows and the number of columns. The output summary table will
have two columns and two rows. The first is the ".param." column with the labels "rows" and
"columns"; the second column, "value", contains the row and column counts.

Usage

tt_tbl_dims(tbl)

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

Examples

Get the dimensions of the game_revenue dataset that is included in the pointblank package.

tt_tbl_dims(tbl = game_revenue)
#> # A tibble: 2 x 2
#> .param. value
#> <chr> <int>
#> 1 rows 2000
#> 2 columns 11

This output table is useful when a table validation depends on its dimensions. Here, we check that
game_revenue has at least 1500 rows.

tt_tbl_dims(tbl = game_revenue) %>%
dplyr::filter(.param. == "rows") %>%
test_col_vals_gt(
columns = value,
value = 1500

)
#> [1] TRUE

tt_time_shift 415

We can check small_table to ensure that number of columns is less than 10.

tt_tbl_dims(tbl = small_table) %>%
dplyr::filter(.param. == "columns") %>%
test_col_vals_lt(
columns = value,
value = 10

)
#> [1] TRUE

Function ID

12-3

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_time_shift(), tt_time_slice()

tt_time_shift Table Transformer: shift the times of a table

Description

With any table object containing date or date-time columns, these values can be precisely shifted
with tt_time_shift() and specification of the time shift. We can either provide a string with the
time shift components and the shift direction (like "-4y 10d") or a difftime object (which can be
created via lubridate expressions or by using the base::difftime() function).

Usage

tt_time_shift(tbl, time_shift = "0y 0m 0d 0H 0M 0S")

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

time_shift Time-shift specification
scalar<character> // default: "0y 0m 0d 0H 0M 0S"

Either a character-based representation that specifies the time difference by which
all time values in time-based columns will be shifted, or, a difftime object. The
character string is constructed in the format "0y 0m 0d 0H 0M 0S" and individual
time components can be omitted (i.e., "1y 5d" is a valid specification of shifting
time values ahead one year and five days). Adding a "-" at the beginning of the
string (e.g., "-2y") will shift time values back.

416 tt_time_shift

Details

The time_shift specification cannot have a higher time granularity than the least granular time
column in the input table. Put in simpler terms, if there are any date-based based columns (or
just a single date-based column) then the time shifting can only be in terms of years, months, and
days. Using a time_shift specification of "20d 6H" in the presence of any dates will result in
a truncation to "20d". Similarly, a difftime object will be altered in the same circumstances,
however, the object will resolved to an exact number of days through rounding.

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided
as tbl.

Examples

Let’s use the game_revenue dataset, included in the pointblank package, as the input table for the
first demo. It has entries in the first 21 days of 2015 and we’ll move all of the date and date-time
values to the beginning of 2021 with the tt_time_shift() function and the "6y" time_shift
specification.

tt_time_shift(
tbl = game_revenue,
time_shift = "6y"

)
#> # A tibble: 2,000 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 01:31:03 2021-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 01:31:03 2021-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 01:31:03 2021-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 01:31:03 2021-01-01 01:42:33 ad
#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 11:50:02 2021-01-01 11:55:20 ad
#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 11:50:02 2021-01-01 12:08:56 ad
#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 11:50:02 2021-01-01 12:14:08 ad
#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 11:50:02 2021-01-01 12:21:44 ad
#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2021-01-01 11:50:02 2021-01-01 12:24:20 ad
#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2021-01-01 15:17:18 2021-01-01 15:19:36 ad
#> # i 1,990 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>

Keeping only the date_time and a-f columns of small_table, also included in the package, shift
the times back 2 days and 12 hours with the "-2d 12H" specification.

small_table %>%
dplyr::select(-date) %>%
tt_time_shift("-2d 12H")

#> # A tibble: 13 x 7

tt_time_slice 417

#> date_time a b c d e f
#> <dttm> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-01 23:00:00 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-01 12:32:00 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-03 01:32:00 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-04 05:23:00 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-07 00:36:00 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-08 18:15:00 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-13 06:46:00 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-14 23:27:00 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-17 16:30:00 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-17 16:30:00 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-24 08:07:00 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-25 14:51:00 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-27 23:23:00 1 3-dka-303 NA 2230. TRUE high

Function ID

12-5

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_tbl_dims(), tt_time_slice()

tt_time_slice Table Transformer: slice a table with a slice point on a time column

Description

With any table object containing date, date-time columns, or a mixture thereof, any one of those
columns can be used to effectively slice the data table in two with a slice_point: and you get to
choose which of those slices you want to keep. The slice point can be defined in several ways. One
method involves using a decimal value between 0 and 1, which defines the slice point as the time
instant somewhere between the earliest time value (at 0) and the latest time value (at 1). Another
way of defining the slice point is by supplying a time value, and the following input types are
accepted: (1) an ISO 8601 formatted time string (as a date or a date-time), (2) a POSIXct time, or
(3) a Date object.

Usage

tt_time_slice(
tbl,
time_column = NULL,
slice_point = 0,
keep = c("left", "right"),
arrange = FALSE

)

418 tt_time_slice

Arguments

tbl A data table
obj:<tbl_*> // required
A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

time_column Column with time data
scalar<character> // default: NULL (optional)
The time-based column that will be used as a basis for the slicing. If no time
column is provided then the first one found will be used.

slice_point scalar<numeric|character|POSIXct|Date> // default: 0
The location on the time_column where the slicing will occur. This can either
be a decimal value from 0 to 1, an ISO 8601 formatted time string (as a date or
a date-time), a POSIXct time, or a Date object.

keep Data slice to keep
singl-kw:[left|right] // default: "left"
Which slice should be kept? The "left" side (the default) contains data rows
that are earlier than the slice_point and the "right" side will have rows that
are later.

arrange Arrange data slice by the time data?
scalar<logical> // default: FALSE
Should the slice be arranged by the time_column? This may be useful if the
input tbl isn’t ordered by the time_column. By default, this is FALSE and the
original ordering is retained.

Details

There is the option to arrange the table by the date or date-time values in the time_column. This
ordering is always done in an ascending manner. Any NA/NULL values in the time_column will
result in the corresponding rows can being removed (no matter which slice is retained).

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided
as tbl.

Examples

Let’s use the game_revenue dataset, included in the pointblank package, as the input table for the
first demo. It has entries in the first 21 days of 2015 and we’ll elect to get all of the records where
the time values are strictly for the first 15 days of 2015. The keep argument has a default of "left"
so all rows where the time column is less than "2015-01-16 00:00:00" will be kept.

tt_time_slice(
tbl = game_revenue,
time_column = "time",
slice_point = "2015-01-16"

)

tt_time_slice 419

#> # A tibble: 1,208 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 11:55:20 ad
#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad
#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad
#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad
#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad
#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2015-01-01 15:17:18 2015-01-01 15:19:36 ad
#> # i 1,198 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>

Omit the first 25% of records from small_table, also included in the package, with a fractional
slice_point of 0.25 on the basis of a timeline that begins at 2016-01-04 11:00:00 and ends at
2016-01-30 11:23:00.

small_table %>%
tt_time_slice(
slice_point = 0.25,
keep = "right"

)
#> # A tibble: 8 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 2 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 3 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 6 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 7 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 8 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Function ID

12-6

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_tbl_dims(), tt_time_shift()

420 validate_rmd

validate_rmd Perform pointblank validation testing within R Markdown documents

Description

The validate_rmd() function sets up a framework for validation testing within specialized valida-
tion code chunks inside an R Markdown document. To enable this functionality, validate_rmd()
should be called early within an R Markdown document code chunk (preferably in the setup chunk)
to signal that validation should occur within specific code chunks. The validation code chunks re-
quire the validate = TRUE option to be set. Using pointblank validation functions on data in these
marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors
are reported in the validation code chunk after rendering the document to HTML, where a centered
status button either indicates success or the number of overall failures. Clicking the button reveals
the otherwise hidden validation statements and their error messages (if any).

Usage

validate_rmd(summary = TRUE, log_to_file = NULL)

Arguments

summary Include a validation summary
scalar<logical> // default: TRUE

If TRUE then there will be a leading summary of all validations in the rendered
R Markdown document. With FALSE, this element is not shown.

log_to_file Log validation results to a file
scalar<logical|character> // default: NULL (optional)

An option to log errors to a text file. By default, no logging is done but TRUE
will write log entries to "validation_errors.log" in the working directory.
To both enable logging and to specify a file name, include a path to a log file of
the desired name.

Function ID

1-4

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store()

write_testthat_file 421

write_testthat_file Transform a pointblank agent to a testthat test file

Description

With a pointblank agent, we can write a testthat test file and opt to place it in the testthat/tests
if it is available in the project path (we can specify an alternate path as well). This works by trans-
forming the validation steps to a series of expect_*() calls inside individual testthat::test_that()
statements.

A major requirement for using write_testthat_file() on an agent is the presence of an expres-
sion that can retrieve the target table. Typically, we might supply a table-prep formula, which is a
formula that can be invoked to obtain the target table (e.g., tbl = ~ pointblank::small_table).
This user-supplied statement will be used by write_testthat_file() to generate a table-loading
statement at the top of the new testthat test file so that the target table is available for each of the
testthat::test_that() statements that follow. If an agent was not created using a table-prep
formula set for the tbl, it can be modified via the set_tbl() function.

Thresholds will be obtained from those applied for the stop state. This can be set up for a point-
blank agent by passing an action_levels object to the actions argument of create_agent() or
the same argument of any included validation function. If stop thresholds are not available, then a
threshold value of 1 will be used for each generated expect_*() statement in the resulting testthat
test file.

There is no requirement that the agent first undergo interrogation with interrogate(). However,
it may be useful as a dry run to interactively perform an interrogation on the target data before
generating the testthat test file.

Usage

write_testthat_file(
agent,
name = NULL,
path = NULL,
overwrite = FALSE,
skips = NULL,
quiet = FALSE

)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

name Name for generated testthat file
scalar<character> // default: NULL (optional)
An optional name for for the testhat test file. This should be a name without
extension and without the leading "test-" text. If nothing is supplied, the name

422 write_testthat_file

will be derived from the tbl_name in the agent. If that’s not present, a generic
name will be used.

path File path
scalar<character> // default: NULL (optional)
A path can be specified here if there shouldn’t be an attempt to place the file in
testthat/tests.

overwrite Overwrite a previous file of the same name
scalar<logical> // default: FALSE
Should a testthat file of the same name be overwritten?

skips Test skipping
vector<character> // default: NULL (optional)
This is an optional vector of test-skipping keywords modeled after the test-
that skip_on_*() functions. The following keywords can be used to include
skip_on_*() statements: "cran" (testthat::skip_on_cran()), "travis"
(testthat::skip_on_travis()), "appveyor" (testthat::skip_on_appveyor()),
"ci" (testthat::skip_on_ci()), "covr" (testthat::skip_on_covr()), "bioc"
(testthat::skip_on_bioc()). There are keywords for skipping tests on cer-
tain operating systems and all of them will insert a specific testthat::skip_on_os()
call. These are "windows" (skip_on_os("windows")), "mac" (skip_on_os("mac")),
"linux" (skip_on_os("linux")), and "solaris" (skip_on_os("solaris")).
These calls will be placed at the top of the generated testthat test file.

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Details

Tests for inactive validation steps will be skipped with a clear message indicating that the reason
for skipping was due to the test not being active. Any inactive validation steps can be forced into
an active state by using the activate_steps() on an agent (the opposite is possible with the
deactivate_steps() function).

The testthat package comes with a series of skip_on_*() functions which conveniently cause the
test file to be skipped entirely if certain conditions are met. We can quickly set any number of
these at the top of the testthat test file by supplying keywords as a vector to the skips option of
write_testthat_file(). For instance, setting skips = c("cran", "windows) will add the
testthat skip_on_cran() and skip_on_os("windows") statements, meaning that the generated
test file won’t run on a CRAN system or if the system OS is Windows.

Here is an example of testthat test file output ("test-small_table.R"):

Generated by pointblank

tbl <- small_table

test_that("column `date_time` exists", {

expect_col_exists(

write_testthat_file 423

tbl,
columns = date_time,
threshold = 1

)
})

test_that("values in `c` should be <= `5`", {

expect_col_vals_lte(
tbl,
columns = c,
value = 5,
threshold = 0.25

)
})

This was generated by the following set of R statements:

library(pointblank)

agent <-
create_agent(
tbl = ~ small_table,
actions = action_levels(stop_at = 0.25)

) %>%
col_exists(date_time) %>%
col_vals_lte(c, value = 5)

write_testthat_file(
agent = agent,
name = "small_table",
path = "."

)

Value

Invisibly returns TRUE if the testthat file has been written.

Examples

Creating a testthat file from an agent:
Let’s walk through a data quality analysis of an extremely small table. It’s actually called small_table
and we can find it as a dataset in this package.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>

424 write_testthat_file

#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Creating an action_levels object is a common workflow step when creating a pointblank agent.
We designate failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)

A pointblank agent object is now created and the al object is provided to the agent. The static
thresholds provided by the al object make reports a bit more useful after interrogation.

agent <-
create_agent(
tbl = ~ small_table,
label = "An example.",
actions = al

) %>%
col_exists(c(date, date_time)) %>%
col_vals_regex(
b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
col_vals_gt(d, value = 100) %>%
col_vals_lte(c, value = 5) %>%
interrogate()

This agent and all of the checks can be transformed into a testthat file with write_testthat_file().
The stop thresholds will be ported over to the expect_*() functions in the new file.

write_testthat_file(
agent = agent,
name = "small_table",
path = "."

)

write_testthat_file 425

The above code will generate a file with the name "test-small_table.R". The path was spec-
ified with "." so the file will be placed in the working directory. If you’d like to easily add this
new file to the tests/testthat directory then path = NULL (the default) will makes this possible
(this is useful during package development).
What’s in the new file? This:

Generated by pointblank

tbl <- small_table

test_that("column `date` exists", {

expect_col_exists(
tbl,
columns = date,
threshold = 1

)
})

test_that("column `date_time` exists", {

expect_col_exists(
tbl,
columns = date_time,
threshold = 1

)
})

test_that("values in `b` should match the regular expression:
`[0-9]-[a-z]{3}-[0-9]{3}`", {

expect_col_vals_regex(
tbl,
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}",
threshold = 0.25

)
})

test_that("values in `d` should be > `100`", {

expect_col_vals_gt(
tbl,
columns = d,
value = 100,
threshold = 0.25

)
})

426 x_read_disk

test_that("values in `c` should be <= `5`", {

expect_col_vals_lte(
tbl,
columns = c,
value = 5,
threshold = 0.25

)
})

Using an agent stored on disk as a YAML file:
An agent on disk as a YAML file can be made into a testthat file. The "agent-small_table.yml"
file is available in the pointblank package and the path can be obtained with system.file().

yml_file <-
system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)

Writing the testthat file into the working directory is much the same as before but we’re reading
the agent from disk this time. It’s a read and write combo, really. Again, we are choosing to write
the file to the working directory by using path = ".".

write_testthat_file(
agent = yaml_read_agent(yml_file),
name = "from_agent_yaml",
path = "."

)

Function ID

8-5

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), get_sundered_data()

x_read_disk Read an agent, informant, multiagent, or table scan from disk

Description

An agent, informant, multiagent, or table scan that has been written to disk (with x_write_disk())
can be read back into memory with the x_read_disk() function. For an agent or an informant
object that has been generated in this way, it may not have a data table associated with it (de-
pending on whether the keep_tbl option was TRUE or FALSE when writing to disk) but it should
still be able to produce reporting (by printing the agent or informant to the console or using
get_agent_report()/get_informant_report()). An agent will return an x-list with get_agent_x_list()
and yield any available data extracts with get_data_extracts(). Furthermore, all of an agent’s
validation steps will still be present (along with results from the last interrogation).

x_read_disk 427

Usage

x_read_disk(filename, path = NULL, quiet = FALSE)

Arguments

filename File name
scalar<character> // required
The name of a file that was previously written by x_write_disk().

path File path
scalar<character> // default: NULL (optional)
An optional path to the file (combined with filename).

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Details

Should a written-to-disk agent or informant possess a table-prep formula or a specific in-memory
tablewe could use the interrogate() or incorporate() function again. For a data quality re-
porting workflow, it is useful to interrogate() target tables that evolve over time. While the same
validation steps will be used, more can be added before calling interrogate(). For an information
management workflow with an informant object, using incorporate() will update aspects of the
reporting such as table dimensions, and info snippets/text will be regenerated.

Value

Either a ptblank_agent, ptblank_informant, or a ptblank_tbl_scan object.

Examples

A: Reading an agent from disk:
The process of developing an agent and writing it to disk with the x_write_disk() function is
explained in that function’s documentation. Suppose we have such a written file that’s named
"agent-small_table.rds", we could read that to a new agent object with x_read_disk().

agent <- x_read_disk("agent-small_table.rds")

B: Reading an informant from disk:
If there is an informant written to disk via x_write_disk() and it’s named "informant-small_table.rds".
We could read that to a new informant object with x_read_disk().

informant <- x_read_disk("informant-small_table.rds")

C: Reading a multiagent from disk:
The process of creating a multiagent and writing it to disk with the x_write_disk() function is
shown in that function’s documentation. Should we have such a written file called "multiagent-small_table.rds",
we could read that to a new multiagent object with x_read_disk().

multiagent <- x_read_disk("multiagent-small_table.rds")

428 x_write_disk

D: Reading a table scan from disk:
If there is a table scan written to disk via x_write_disk() and it’s named "tbl_scan-storms.rds",
we could read it back into R with x_read_disk().

tbl_scan <- x_read_disk("tbl_scan-storms.rds")

Function ID

9-2

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
set_tbl(), x_write_disk()

x_write_disk Write an agent, informant, multiagent, or table scan to disk

Description

Writing an agent, informant, multiagent, or even a table scan to disk with x_write_disk() can be
useful for keeping data validation intel or table information close at hand for later retrieval (with
x_read_disk()). By default, any data table that the agent or informant may have held before being
committed to disk will be expunged (not applicable to any table scan since they never hold a table
object). This behavior can be changed by setting keep_tbl to TRUE but this only works in the case
where the table is not of the tbl_dbi or the tbl_spark class.

Usage

x_write_disk(
x,
filename,
path = NULL,
keep_tbl = FALSE,
keep_extracts = FALSE,
quiet = FALSE

)

Arguments

x One of several types of objects
<object> // required
An agent object of class ptblank_agent, an informant of class ptblank_informant,
or an table scan of class ptblank_tbl_scan.

filename File name
scalar<character> // required
The filename to create on disk for the agent, informant, or table scan.

x_write_disk 429

path File path
scalar<character> // default: NULL (optional)
An optional path to which the file should be saved (this is automatically com-
bined with filename).

keep_tbl Keep data table inside object
scalar<logical> // default: FALSE
An option to keep a data table that is associated with the agent or informant
(which is the case when the agent, for example, is created using create_agent(tbl = <data table, ...)).
The default is FALSE where the data table is removed before writing to disk. For
database tables of the class tbl_dbi and for Spark DataFrames (tbl_spark) the
table is always removed (even if keep_tbl is set to TRUE).

keep_extracts Keep data extracts inside object
scalar<logical> // default: FALSE
An option to keep any collected extract data for failing rows. Only applies to
agent objects. By default, this is FALSE (i.e., extract data is removed).

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Details

It is recommended to set up a table-prep formula so that the agent and informant can access re-
freshed data after being read from disk through x_read_disk(). This can be done initially with
the tbl argument of create_agent()/create_informant() by passing in a table-prep formula or
a function that can obtain the target table when invoked. Alternatively, we can use the set_tbl()
with a similarly crafted tbl expression to ensure that an agent or informant can retrieve a table at a
later time.

Value

Invisibly returns TRUE if the file has been written.

Examples

A: Writing an agent to disk:
Let’s go through the process of (1) developing an agent with a validation plan (to be used for the
data quality analysis of the small_table dataset), (2) interrogating the agent with the interrogate()
function, and (3) writing the agent and all its intel to a file.
Creating an action_levels object is a common workflow step when creating a pointblank agent.
We designate failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)

430 x_write_disk

Now, let’s create a pointblank agent object and give it the al object (which serves as a default
for all validation steps which can be overridden). The data will be referenced in the tbl argument
with a leading ~.

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "`x_write_disk()`",
actions = al

)

Then, as with any agent object, we can add steps to the validation plan by using as many valida-
tion functions as we want. After that, use interrogate().

agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5) %>%
interrogate()

The agent can be written to a file with the x_write_disk() function.

x_write_disk(
agent,
filename = "agent-small_table.rds"

)

We can read the file back as an agent with the x_read_disk() function and we’ll get all of the
intel along with the restored agent.
If you’re consistently writing agent reports when periodically checking data, we could make use
of the affix_date() or affix_datetime() depending on the granularity you need. Here’s an
example that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.rds".

x_write_disk(
agent,
filename = affix_datetime(
"agent-small_table.rds"

)
)

B: Writing an informant to disk:
Let’s go through the process of (1) creating an informant object that minimally describes the
small_table dataset, (2) ensuring that data is captured from the target table using the incorporate()
function, and (3) writing the informant to a file.

x_write_disk 431

Create a pointblank informant object with create_informant() and the small_table dataset.
Use incorporate() so that info snippets are integrated into the text.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "`x_write_disk()`"

) %>%
info_snippet(
snippet_name = "high_a",
fn = snip_highest(column = "a")

) %>%
info_snippet(
snippet_name = "low_a",
fn = snip_lowest(column = "a")

) %>%
info_columns(
columns = a,
info = "From {low_a} to {high_a}."

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`."

) %>%
incorporate()

The informant can be written to a file with x_write_disk(). Let’s do this with affix_date()
so that the filename has a datestamp.

x_write_disk(
informant,
filename = affix_date(
"informant-small_table.rds"

)
)

We can read the file back into a new informant object (in the same state as when it was saved) by
using x_read_disk().

C: Writing a multiagent to disk:
Let’s create one more pointblank agent object, provide it with some validation steps, and interrogate().

agent_b <-
create_agent(
tbl = ~ small_table,

432 x_write_disk

tbl_name = "small_table",
label = "`x_write_disk()`",
actions = al

) %>%
col_vals_gt(
columns = b,
value = g,
na_pass = TRUE,
label = "b > g"

) %>%
col_is_character(
columns = c(b, f),
label = "Verifying character-type columns"

) %>%
interrogate()

Now we can combine the earlier agent object with the newer agent_b to create a multiagent.

multiagent <- create_multiagent(agent, agent_b)

The multiagent can be written to a file with the x_write_disk() function.

x_write_disk(
multiagent,
filename = "multiagent-small_table.rds"

)

We can read the file back as a multiagent with the x_read_disk() function and we’ll get all of
the constituent agents and their associated intel back as well.

D: Writing a table scan to disk:
We can get a report that describes all of the data in the storms dataset.

tbl_scan <- scan_data(tbl = dplyr::storms)

The table scan object can be written to a file with x_write_disk().

x_write_disk(
tbl_scan,
filename = "tbl_scan-storms.rds"

)

Function ID

9-1

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
set_tbl(), x_read_disk()

yaml_agent_interrogate 433

yaml_agent_interrogate

Get an agent from pointblank YAML and interrogate()

Description

The yaml_agent_interrogate() function operates much like the yaml_read_agent() function
(reading a pointblank YAML file and generating an agent with a validation plan in place). The
key difference is that this function takes things a step further and interrogates the target table (de-
fined by table-prep formula that is required in the YAML file). The additional auto-invocation of
interrogate() uses the default options of that function. As with yaml_read_agent() the agent
is returned except, this time, it has intel from the interrogation.

Usage

yaml_agent_interrogate(filename, path = NULL)

Arguments

filename File name
scalar<character> // required
The name of the YAML file that contains fields related to an agent.

path #’ @param path File path
scalar<character> // default: NULL (optional)
An optional path to the YAML file (combined with filename).

Value

A ptblank_agent object.

Examples

There’s a YAML file available in the pointblank package that’s also called "agent-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an agent with a pre-existing validation plan by using the yaml_read_agent()
function.

agent <- yaml_read_agent(filename = yml_file_path)

agent

434 yaml_agent_show_exprs

This particular agent is using ~ tbl_source("small_table", "tbl_store.yml") to source the
table-prep from a YAML file that holds a table store (can be seen using yaml_agent_string(agent
= agent)). Let’s put that file in the working directory (the pointblank package has the correspond-
ing YAML file):

yml_tbl_store_path <-
system.file(
"yaml", "tbl_store.yml",
package = "pointblank"

)

file.copy(from = yml_tbl_store_path, to = ".")

As can be seen from the validation report, no interrogation was yet performed. Saving an agent to
YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on
the same target table. We can either follow this up with with interrogate() and get an agent with
intel, or, we can interrogate directly from the YAML file with yaml_agent_interrogate():

agent <- yaml_agent_interrogate(filename = yml_file_path)

agent

Function ID

11-4

See Also

Other pointblank YAML: yaml_agent_show_exprs(), yaml_agent_string(), yaml_exec(), yaml_informant_incorporate(),
yaml_read_agent(), yaml_read_informant(), yaml_write()

yaml_agent_show_exprs Display validation expressions using pointblank YAML

Description

The yaml_agent_show_exprs() function follows the specifications of a pointblank YAML file to
generate and show the pointblank expressions for generating the described validation plan. The
expressions are shown in the console, providing an opportunity to copy the statements and extend
as needed. A pointblank YAML file can itself be generated by using the yaml_write() function
with a pre-existing agent, or, it can be carefully written by hand.

Usage

yaml_agent_show_exprs(filename, path = NULL)

yaml_agent_show_exprs 435

Arguments

filename File name
scalar<character> // required
The name of the YAML file that contains fields related to an agent.

path #’ @param path File path
scalar<character> // default: NULL (optional)
An optional path to the YAML file (combined with filename).

Examples

Let’s create a validation plan for the data quality analysis of the small_table dataset. We need an
agent and its table-prep formula enables retrieval of the target table.

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "A simple example with the `small_table`.",
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)
) %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5)

The agent can be written to a pointblank YAML file with yaml_write().

yaml_write(
agent = agent,
filename = "agent-small_table.yml"

)

At a later time, the YAML file can be read into a new agent with the yaml_read_agent() function.

agent <- yaml_read_agent(filename = "agent-small_table.yml")

agent

To get a sense of which expressions are being used to generate the new agent, we can use yaml_agent_show_exprs().

436 yaml_agent_string

yaml_agent_show_exprs(filename = "agent-small_table.yml")

create_agent(
tbl = ~small_table,
actions = action_levels(
warn_at = 0.1,
stop_at = 0.25,
notify_at = 0.35

),
tbl_name = "small_table",
label = "A simple example with the `small_table`."

) %>%
col_exists(
columns = c(date, date_time)

) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(
columns = d,
value = 100

) %>%
col_vals_lte(
columns = c,
value = 5

)

Function ID

11-6

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_string(), yaml_exec(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

yaml_agent_string Display pointblank YAML using an agent or a YAML file

Description

With pointblank YAML, we can serialize an agent’s validation plan (with yaml_write()), read it
back later with a new agent (with yaml_read_agent()), or perform an interrogation on the target
data table directly with the YAML file (with yaml_agent_interrogate()). The yaml_agent_string()
function allows us to inspect the YAML generated by yaml_write() in the console, giving us a look

yaml_agent_string 437

at the YAML without needing to open the file directly. Alternatively, we can provide an agent to the
yaml_agent_string() and view the YAML representation of the validation plan without needing
to write the YAML to disk beforehand.

Usage

yaml_agent_string(agent = NULL, filename = NULL, path = NULL, expanded = FALSE)

Arguments

agent An agent object of class ptblank_agent. If an object is provided here, then
filename must not be provided.

filename The name of the YAML file that contains fields related to an agent. If a file name
is provided here, then agent object must not be provided in agent.

path An optional path to the YAML file (combined with filename).

expanded Should the written validation expressions for an agent be expanded such that
tidyselect expressions for columns are evaluated, yielding a validation function
per column? By default, this is FALSE so expressions as written will be retained
in the YAML representation.

Value

Nothing is returned. Instead, text is printed to the console.

Examples

There’s a YAML file available in the pointblank package that’s called "agent-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)

We can view the contents of the YAML file in the console with the yaml_agent_string() function.

yaml_agent_string(filename = yml_file_path)

type: agent
tbl: ~ tbl_source("small_table", "tbl_store.yml")
tbl_name: small_table
label: A simple example with the `small_table`.
lang: en
locale: en
actions:
warn_fraction: 0.1
stop_fraction: 0.25

438 yaml_exec

notify_fraction: 0.35
steps:
- col_exists:

columns: vars(date)
- col_exists:

columns: vars(date_time)
- col_vals_regex:

columns: vars(b)
regex: '[0-9]-[a-z]{3}-[0-9]{3}'

- rows_distinct:
columns: ~

- col_vals_gt:
columns: vars(d)
value: 100.0

- col_vals_lte:
columns: vars(c)
value: 5.0

Incidentally, we can also use yaml_agent_string() to print YAML in the console when supplying
an agent object as the input. This can be useful for previewing YAML output just before writing it
to disk with yaml_write().

Function ID

11-5

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_exec(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

yaml_exec Execute all agent and informant YAML tasks

Description

The yaml_exec() function takes all relevant pointblank YAML files in a directory and executes
them. Execution involves interrogation of agents for YAML agents and incorporation of informants
for YAML informants. Under the hood, this uses yaml_agent_interrogate() and yaml_informant_incorporate()
and then x_write_disk() to save the processed objects to an output directory. These written arti-
facts can be read in at any later time with the x_read_disk() function or the read_disk_multiagent()
function. This is useful when data in the target tables are changing and the periodic testing of such
tables is part of a data quality monitoring plan.

The output RDS files are named according to the object type processed, the target table, and the date-
time of processing. For convenience and modularity, this setup is ideal when a table store YAML
file (typically named "tbl_store.yml" and produced via the tbl_store() and yaml_write()

yaml_exec 439

workflow) is available in the directory, and when table-prep formulas are accessed by name through
tbl_source().

A typical directory of files set up for execution in this way might have the following contents:

• a "tbl_store.yml" file for holding table-prep formulas (created with tbl_store() and writ-
ten to YAML with yaml_write())

• one or more YAML agent files to validate tables (ideally using tbl_source())
• one or more YAML informant files to provide refreshed metadata on tables (again, using
tbl_source() to reference table preparations is ideal)

• an output folder (default is "output") to save serialized versions of processed agents and
informants

Minimal example files of the aforementioned types can be found in the pointblank package through
the following system.file() calls:

• system.file("yaml", "agent-small_table.yml", package = "pointblank")

• system.file("yaml", "informant-small_table.yml", package = "pointblank")

• system.file("yaml", "tbl_store.yml", package = "pointblank")

The directory itself can be accessed using system.file("yaml", package = "pointblank").

Usage

yaml_exec(
path = NULL,
files = NULL,
write_to_disk = TRUE,
output_path = file.path(path, "output"),
keep_tbl = FALSE,
keep_extracts = FALSE

)

Arguments

path The path that contains the YAML files for agents and informants.
files A vector of YAML files to use in the execution workflow. By default, yaml_exec()

will attempt to process every valid YAML file in path but supplying a vector
here limits the scope to the specified files.

write_to_disk Should the execution workflow include a step that writes output files to disk?
This internally calls x_write_disk() to write RDS files and uses the base file-
name of the agent/informant YAML file as part of the output filename, append-
ing the date-time to the basename.

output_path The output path for any generated output files. By default, this will be a subdi-
rectory of the provided path called "output".

keep_tbl, keep_extracts
For agents, the table may be kept if it is a data frame object (databases tables will
never be pulled for storage) and extracts, collections of table rows that failed a
validation step, may also be stored. By default, both of these options are set to
FALSE.

440 yaml_exec

Value

Invisibly returns a named vector of file paths for the input files that were processed; file output paths
(for wherever writing occurred) are given as the names.

Function ID

11-8

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

The 'yaml' directory that is
accessible in the package through
`system.file()` contains the files
1. `agent-small_table.yml`
2. `informant-small_table.yml`
3. `tbl_store.yml`

There are references in YAML files
1 & 2 to the table store YAML file,
so, they all work together cohesively

Let's process the agent and the
informant YAML files with `yaml_exec()`;
and we'll specify the working directory
as the place where the output RDS files
are written

output_dir <- getwd()

yaml_exec(
path = system.file(
"yaml", package = "pointblank"

),
output = output_dir

)

This generates two RDS files in the
working directory: one for the agent
and the other for the informant; each
of them are automatically time-stamped
so that periodic execution can be
safely carried out without risk of
overwriting

}

yaml_informant_incorporate 441

yaml_informant_incorporate

Get an informant from pointblank YAML and incorporate()

Description

The yaml_informant_incorporate() function operates much like the yaml_read_informant()
function (reading a pointblank YAML file and generating an informant with all information in
place). The key difference is that this function takes things a step further and incorporates aspects
from the the target table (defined by table-prep formula that is required in the YAML file). The
additional auto-invocation of incorporate() uses the default options of that function. As with
yaml_read_informant() the informant is returned except, this time, it has been updated with the
latest information from the target table.

Usage

yaml_informant_incorporate(filename, path = NULL)

Arguments

filename File name
scalar<character> // required
The name of the YAML file that contains fields related to an informant.

path File path
scalar<character> // default: NULL (optional)
An optional path to the YAML file (combined with filename).

Value

A ptblank_informant object.

Examples

There’s a YAML file available in the pointblank package that’s called "informant-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "informant-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an informant by using the yaml_informant_incorporate() func-
tion. If you expect metadata to change with time, it’s best to use yaml_informant_incorporate()
instead of yaml_read_informant() since the former will go the extra mile and perform incorporate()
in addition to the reading.

442 yaml_read_agent

informant <- yaml_informant_incorporate(filename = yml_file_path)

informant

As can be seen from the information report, the available table metadata was restored and reported.
If the metadata were to change with time, that would be updated as well.

Function ID

11-7

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_read_agent(), yaml_read_informant(), yaml_write()

yaml_read_agent Read a pointblank YAML file to create an agent object

Description

With yaml_read_agent() we can read a pointblank YAML file that describes a validation plan
to be carried out by an agent (typically generated by the yaml_write() function. What’s returned
is a new agent with that validation plan, ready to interrogate the target table at will (using the
table-prep formula that is set with the tbl argument of create_agent()). The agent can be given
more validation steps if needed before using interrogate() or taking part in any other agent ops
(e.g., writing to disk with outputs intact via x_write_disk() or again to pointblank YAML with
yaml_write()).

To get a picture of how yaml_read_agent() is interpreting the validation plan specified in the
pointblank YAML, we can use the yaml_agent_show_exprs() function. That function shows us
(in the console) the pointblank expressions for generating the described validation plan.

Usage

yaml_read_agent(filename, path = NULL)

Arguments

filename File name
scalar<character> // required
The name of the YAML file that contains fields related to an agent.

path File path
scalar<character> // default: NULL (optional)
An optional path to the YAML file (combined with filename).

Value

A ptblank_agent object.

yaml_read_agent 443

Examples

There’s a YAML file available in the pointblank package that’s also called "agent-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an agent with a pre-existing validation plan by using the yaml_read_agent()
function.

agent <- yaml_read_agent(filename = yml_file_path)

agent

This particular agent is using ~ tbl_source("small_table", "tbl_store.yml") to source the
table-prep from a YAML file that holds a table store (can be seen using yaml_agent_string(agent
= agent)). Let’s put that file in the working directory (the pointblank package has the correspond-
ing YAML file):

yml_tbl_store_path <-
system.file(
"yaml", "tbl_store.yml",
package = "pointblank"

)

file.copy(from = yml_tbl_store_path, to = ".")

As can be seen from the validation report, no interrogation was yet performed. Saving an agent to
YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on
the same target table. We can either follow this up with with interrogate() and get an agent with
intel, or, we can interrogate directly from the YAML file with yaml_agent_interrogate():

agent <- yaml_agent_interrogate(filename = yml_file_path)

agent

Function ID

11-2

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_informant(), yaml_write()

444 yaml_read_informant

yaml_read_informant Read a pointblank YAML file to create an informant object

Description

With yaml_read_informant() we can read a pointblank YAML file that describes table informa-
tion (typically generated by the yaml_write() function. What’s returned is a new informant object
with the information intact. The informant object can be given more information through use of the
info_*() functions.

Usage

yaml_read_informant(filename, path = NULL)

Arguments

filename File name
scalar<character> // required
The name of the YAML file that contains fields related to an informant.

path File path
scalar<character> // default: NULL (optional)
An optional path to the YAML file (combined with filename).

Value

A ptblank_informant object.

Examples

There’s a YAML file available in the pointblank package that’s called "informant-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "informant-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an informant by using the yaml_read_informant() function.

informant <- yaml_read_informant(filename = yml_file_path)

informant

As can be seen from the information report, the available table metadata was restored and re-
ported. If you expect metadata to change with time, it might be beneficial to use incorporate()
to query the target table. Or, we can perform this querying directly from the YAML file with
yaml_informant_incorporate().

yaml_write 445

Function ID

11-3

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_write()

yaml_write Write pointblank objects to YAML files

Description

With yaml_write() we can take different pointblank objects (these are the ptblank_agent, ptblank_informant,
and tbl_store) and write them to YAML. With an agent, for example, yaml_write() will write
that everything that is needed to specify an agent and it’s validation plan to a YAML file. With
YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent
with the yaml_read_agent() function. That agent will have a validation plan and is ready to
interrogate() the data. We can go a step further and perform an interrogation directly from the
YAML file with the yaml_agent_interrogate() function. That returns an agent with intel (hav-
ing already interrogated the target data table). An informant object can also be written to YAML
with yaml_write().

One requirement for writing an agent or an informant to YAML is that we need to have a table-prep
formula specified (it’s an R formula that is used to read the target table when interrogate() or
incorporate() is called). This option can be set when using create_agent()/create_informant()
or with set_tbl() (useful with an existing agent or informant object).

Usage

yaml_write(
...,
.list = list2(...),
filename = NULL,
path = NULL,
expanded = FALSE,
quiet = FALSE

)

Arguments

... Pointblank agents, informants, table stores
<series of obj:<ptblank_agent|ptblank_informant|tbl_store>> // re-
quired
Any mix of pointblank objects such as the agent (ptblank_agent), the infor-
mant (ptblank_informant), or the table store (tbl_store). The agent and
informant can be combined into a single YAML file (so long as both objects

446 yaml_write

refer to the same table). A table store cannot be combined with either an agent
or an informant so it must undergo conversion alone.

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)
Allows for the use of a list as an input alternative to

filename File name
scalar<character> // default: NULL (optional)
The name of the YAML file to create on disk. It is recommended that either the
.yaml or .yml extension be used for this file. If not provided then default names
will be used ("tbl_store.yml") for a table store and the other objects will get
default naming to the effect of "<object>-<tbl_name>.yml".

path File path
scalar<character> // default: NULL (optional)
An optional path to which the YAML file should be saved (combined with
filename).

expanded Expand validation when repeating across multiple columns
scalar<logical> // default: FALSE
Should the written validation expressions for an agent be expanded such that
tidyselect expressions for columns are evaluated, yielding a validation function
per column? By default, this is FALSE so expressions as written will be retained
in the YAML representation.

quiet Inform (or not) upon file writing
scalar<logical> // default: FALSE
. Should the function not inform when the file is written?

Value

Invisibly returns TRUE if the YAML file has been written.

Examples

Writing an agent object to a YAML file:
Let’s go through the process of developing an agent with a validation plan. We’ll use the small_table
dataset in the following examples, which will eventually offload the developed validation plan to
a YAML file.

small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high

yaml_write 447

#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Creating an action_levels object is a common workflow step when creating a pointblank agent.
We designate failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)

Now let’s create the agent and pass it the al object (which serves as a default for all validation
steps which can be overridden). The data will be referenced in tbl with a leading ~ and this is a
requirement for writing to YAML since the preparation of the target table must be self contained.

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table",
label = "A simple example with the `small_table`.",
actions = al

)

Then, as with any agent object, we can add steps to the validation plan by using as many valida-
tion functions as we want.

agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5)

The agent can be written to a pointblank-readable YAML file with the yaml_write() function.
Here, we’ll use the filename "agent-small_table.yml" and, after writing, the YAML file will
be in the working directory:

yaml_write(agent, filename = "agent-small_table.yml")

We can view the YAML file in the console with the yaml_agent_string() function.

yaml_agent_string(filename = "agent-small_table.yml")

448 yaml_write

type: agent
tbl: ~small_table
tbl_name: small_table
label: A simple example with the `small_table`.
lang: en
locale: en
actions:
warn_fraction: 0.1
stop_fraction: 0.25
notify_fraction: 0.35

steps:
- col_exists:

columns: c(date, date_time)
- col_vals_regex:

columns: c(b)
regex: '[0-9]-[a-z]{3}-[0-9]{3}'

- rows_distinct:
columns: ~

- col_vals_gt:
columns: c(d)
value: 100.0

- col_vals_lte:
columns: c(c)
value: 5.0

Incidentally, we can also use yaml_agent_string() to print YAML in the console when supply-
ing an agent as the input. This can be useful for previewing YAML output just before writing it to
disk with yaml_write().

Reading an agent object from a YAML file:
There’s a YAML file available in the pointblank package that’s also called "agent-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "agent-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an agent with a pre-existing validation plan by using the yaml_read_agent()
function.

agent <- yaml_read_agent(filename = yml_file_path)

agent

This particular agent is using ~ tbl_source("small_table", "tbl_store.yml") to source the
table-prep from a YAML file that holds a table store (can be seen using yaml_agent_string(agent
= agent)). Let’s put that file in the working directory (the pointblank package has the corre-
sponding YAML file):

yaml_write 449

yml_tbl_store_path <-
system.file(
"yaml", "tbl_store.yml",
package = "pointblank"

)

file.copy(from = yml_tbl_store_path, to = ".")

As can be seen from the validation report, no interrogation was yet performed. Saving an agent
to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation
on the same target table. We can either follow this up with with interrogate() and get an agent
with intel, or, we can interrogate directly from the YAML file with yaml_agent_interrogate():

agent <- yaml_agent_interrogate(filename = yml_file_path)

agent

Writing an informant object to a YAML file:
Let’s walk through how we can generate some useful information for a really small table. We
can create an informant object with create_informant() and we’ll again use the small_table
dataset.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table",
label = "A simple example with the `small_table`."

)

Then, as with any informant object, we can add info text to the using as many info_*() func-
tions as we want.

informant <-
informant %>%
info_columns(
columns = a,
info = "In the range of 1 to 10. (SIMPLE)"

) %>%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., `Sys.time()`)."

) %>%
info_columns(
columns = date,
info = "The date part of `date_time`. (CALC)"

)

The informant can be written to a pointblank-readable YAML file with the yaml_write() func-
tion. Here, we’ll use the filename "informant-small_table.yml" and, after writing, the YAML
file will be in the working directory:

450 yaml_write

yaml_write(informant, filename = "informant-small_table.yml")

We can inspect the YAML file in the working directory and expect to see the following:

type: informant
tbl: ~small_table
tbl_name: small_table
info_label: A simple example with the `small_table`.
lang: en
locale: en
table:
name: small_table
_columns: 8
_rows: 13.0
_type: tbl_df

columns:
date_time:
_type: POSIXct, POSIXt

info: Time-based values (e.g., `Sys.time()`).
date:
_type: Date
info: Time-based values (e.g., `Sys.time()`). The date part of `date_time`.

a:
_type: integer
info: In the range of 1 to 10. (SIMPLE)

b:
_type: character

c:
_type: numeric

d:
_type: numeric

e:
_type: logical

f:
_type: character

Reading an informant object from a YAML file:
There’s a YAML file available in the pointblank package that’s also called "informant-small_table.yml".
The path for it can be accessed through system.file():

yml_file_path <-
system.file(
"yaml", "informant-small_table.yml",
package = "pointblank"

)

The YAML file can be read as an informant by using the yaml_read_informant() function.

informant <- yaml_read_informant(filename = yml_file_path)

informant

yaml_write 451

As can be seen from the information report, the available table metadata was restored and re-
ported. If you expect metadata to change with time, it might be beneficial to use incorporate()
to query the target table. Or, we can perform this querying directly from the YAML file with
yaml_informant_incorporate():

informant <- yaml_informant_incorporate(filename = yml_file_path)

There will be no apparent difference in this particular case since small_data is a static table
with no alterations over time. However, using yaml_informant_incorporate() is good practice
since this refreshing of data will be important with real-world datasets.

Function ID

11-1

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant()

Index

∗ Datasets
game_revenue, 283
game_revenue_info, 284
small_table, 369
small_table_sqlite, 370
specifications, 385

∗ Emailing
email_blast, 268
email_create, 272
stock_msg_body, 386
stock_msg_footer, 386

∗ Incorporate and Report
get_informant_report, 295
incorporate, 311

∗ Information Functions
info_columns, 313
info_columns_from_tbl, 317
info_section, 319
info_snippet, 323
info_tabular, 326
snip_highest, 371
snip_list, 372
snip_lowest, 375
snip_stats, 376

∗ Interrogate and Report
get_agent_report, 285
interrogate, 329

∗ Logging
log4r_step, 331

∗ Object Ops
activate_steps, 9
deactivate_steps, 261
export_report, 274
remove_steps, 335
set_tbl, 368
x_read_disk, 426
x_write_disk, 428

∗ Planning and Prep
action_levels, 4

create_agent, 239
create_informant, 247
db_tbl, 255
draft_validation, 262
file_tbl, 277
scan_data, 358
tbl_get, 388
tbl_source, 397
tbl_store, 399
validate_rmd, 420

∗ Post-interrogation
all_passed, 16
get_agent_x_list, 290
get_data_extracts, 293
get_sundered_data, 302
write_testthat_file, 421

∗ Table Transformers
get_tt_param, 306
tt_string_info, 407
tt_summary_stats, 409
tt_tbl_colnames, 412
tt_tbl_dims, 414
tt_time_shift, 415
tt_time_slice, 417

∗ The multiagent
create_multiagent, 252
get_multiagent_report, 297
read_disk_multiagent, 334

∗ Utility and Helper Functions
affix_date, 11
affix_datetime, 13
col_schema, 71
from_github, 281
has_columns, 308
stop_if_not, 387

∗ datasets
game_revenue, 283
game_revenue_info, 284
small_table, 369

452

INDEX 453

specifications, 385
∗ pointblank YAML

yaml_agent_interrogate, 433
yaml_agent_show_exprs, 434
yaml_agent_string, 436
yaml_exec, 438
yaml_informant_incorporate, 441
yaml_read_agent, 442
yaml_read_informant, 444
yaml_write, 445

∗ validation functions
col_count_match, 18
col_exists, 24
col_is_character, 30
col_is_date, 36
col_is_factor, 42
col_is_integer, 47
col_is_logical, 53
col_is_numeric, 59
col_is_posix, 65
col_schema_match, 73
col_vals_between, 80
col_vals_decreasing, 89
col_vals_equal, 98
col_vals_expr, 106
col_vals_gt, 113
col_vals_gte, 121
col_vals_in_set, 137
col_vals_increasing, 129
col_vals_lt, 145
col_vals_lte, 152
col_vals_make_set, 160
col_vals_make_subset, 168
col_vals_not_between, 175
col_vals_not_equal, 185
col_vals_not_in_set, 192
col_vals_not_null, 200
col_vals_null, 207
col_vals_regex, 214
col_vals_within_spec, 222
conjointly, 231
row_count_match, 350
rows_complete, 337
rows_distinct, 344
serially, 360
specially, 377
tbl_match, 390

action_levels, 4, 246, 251, 260, 268, 281,

360, 390, 399, 407, 420
action_levels(), 19, 21, 25, 27, 31, 33, 37,

39, 42, 44, 48, 50, 54, 56, 60, 62, 66,
68, 75, 77, 82, 85, 91, 94, 100, 102,
107, 109, 115, 117, 123, 125, 131,
133, 138, 141, 146, 149, 154, 157,
162, 164, 169, 172, 178, 181, 186,
189, 194, 197, 201, 204, 208, 211,
215, 218, 223, 227, 232, 235, 240,
245, 269, 274, 331–333, 338, 341,
345, 347, 352, 354, 362, 364, 368,
378, 381, 391, 394, 429, 447

activate_steps, 9, 261, 277, 336, 369, 428,
432

activate_steps(), 261, 336, 422
affix_date, 11, 16, 73, 282, 310, 387
affix_date(), 13, 16, 276, 430, 431
affix_datetime, 13, 13, 73, 282, 310, 387
affix_datetime(), 13, 16, 430
all_passed, 16, 292, 295, 305, 426
all_passed(), 242, 329

base::difftime(), 415
base::strptime(), 11, 14
blastula::creds(), 269
blastula::creds_anonymous(), 269
blastula::creds_file(), 269
blastula::creds_key(), 269

col_count_match, 18, 30, 35, 41, 47, 53, 59,
64, 70, 80, 89, 98, 105, 113, 120,
128, 137, 144, 152, 160, 167, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_exists, 24, 24, 35, 41, 47, 53, 59, 64, 70,
80, 89, 98, 105, 113, 120, 128, 137,
144, 152, 160, 167, 175, 184, 192,
199, 206, 213, 221, 230, 238, 343,
350, 358, 367, 384, 397

col_exists(), 231, 232
col_is_character, 24, 30, 30, 41, 47, 53, 59,

64, 70, 80, 89, 98, 105, 113, 120,
128, 137, 144, 152, 160, 167, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_is_date, 24, 30, 35, 36, 47, 53, 59, 64,
70, 80, 89, 98, 105, 113, 120, 128,
137, 144, 152, 160, 167, 175, 184,

454 INDEX

192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_is_factor, 24, 30, 35, 41, 42, 53, 59, 64,
70, 80, 89, 98, 105, 113, 120, 128,
137, 144, 152, 160, 167, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_is_integer, 24, 30, 35, 41, 47, 47, 59,
64, 70, 80, 89, 98, 105, 113, 120,
128, 137, 144, 152, 160, 167, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_is_logical, 24, 30, 35, 41, 47, 53, 53,
64, 70, 80, 89, 98, 105, 113, 120,
128, 137, 144, 152, 160, 167, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_is_numeric, 24, 30, 35, 41, 47, 53, 59,
59, 70, 80, 89, 98, 105, 113, 120,
128, 137, 144, 152, 160, 167, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_is_posix, 24, 30, 35, 41, 47, 53, 59, 64,
65, 80, 89, 98, 105, 113, 120, 128,
137, 144, 152, 160, 167, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_schema, 13, 16, 71, 282, 310, 387
col_schema(), 73, 74, 78
col_schema_match, 24, 30, 35, 41, 47, 53, 59,

64, 70, 73, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_schema_match(), 71
col_vals_between, 24, 30, 35, 41, 47, 53, 59,

64, 70, 80, 80, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_between(), 184, 239, 268, 412
col_vals_decreasing, 24, 30, 35, 41, 47, 53,

59, 64, 70, 80, 89, 89, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_decreasing(), 137
col_vals_equal, 24, 30, 35, 41, 47, 53, 59,

64, 70, 80, 89, 98, 98, 113, 121, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_equal(), 192
col_vals_expr, 24, 30, 35, 41, 47, 53, 59, 64,

70, 80, 89, 98, 105, 106, 121, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_gt, 24, 30, 35, 41, 47, 53, 59, 64,
70, 80, 89, 98, 105, 113, 113, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_gt(), 80, 128, 176, 294
col_vals_gte, 24, 30, 35, 41, 47, 53, 59, 64,

70, 80, 89, 98, 105, 113, 121, 121,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_gte(), 80, 120, 176
col_vals_in_set, 24, 30, 35, 41, 47, 53, 59,

64, 70, 80, 89, 98, 105, 113, 121,
128, 137, 137, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_in_set(), 199
col_vals_increasing, 24, 30, 35, 41, 47, 53,

59, 64, 70, 80, 89, 98, 105, 113, 121,
128, 129, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_increasing(), 97, 361
col_vals_lt, 24, 30, 35, 41, 47, 53, 59, 64,

70, 80, 89, 98, 105, 113, 121, 128,
137, 144, 145, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_lt(), 80, 160, 176
col_vals_lte, 24, 30, 35, 41, 47, 53, 59, 64,

70, 80, 89, 98, 105, 113, 121, 128,
137, 144, 152, 152, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_lte(), 80, 152, 176
col_vals_make_set, 24, 30, 36, 41, 47, 53,

59, 65, 70, 80, 89, 98, 105, 113, 121,

INDEX 455

128, 137, 144, 152, 160, 160, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_make_subset, 24, 30, 36, 41, 47,
53, 59, 65, 70, 80, 89, 98, 105, 113,
121, 128, 137, 144, 152, 160, 168,
168, 184, 192, 199, 206, 213, 221,
230, 238, 343, 350, 358, 367, 384,
397

col_vals_make_subset(), 160
col_vals_not_between, 24, 30, 36, 41, 47,

53, 59, 65, 70, 80, 89, 98, 105, 113,
121, 128, 137, 144, 152, 160, 168,
175, 175, 192, 199, 206, 213, 221,
230, 238, 343, 350, 358, 367, 384,
397

col_vals_not_between(), 89
col_vals_not_equal, 24, 30, 36, 41, 47, 53,

59, 65, 70, 80, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 185, 199, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_not_equal(), 105
col_vals_not_in_set, 24, 30, 36, 41, 47, 53,

59, 65, 70, 80, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 192, 206, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_not_in_set(), 144
col_vals_not_null, 24, 30, 36, 41, 47, 53,

59, 65, 70, 80, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 200, 213, 221, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_not_null(), 213
col_vals_null, 24, 30, 36, 41, 47, 53, 59, 65,

70, 80, 89, 98, 105, 113, 121, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 207, 221, 230, 238,
343, 350, 358, 367, 384, 397

col_vals_null(), 206
col_vals_regex, 24, 30, 36, 41, 47, 53, 59,

65, 70, 80, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 214, 230,
238, 343, 350, 358, 367, 384, 397

col_vals_within_spec, 24, 30, 36, 41, 47,
53, 59, 65, 70, 80, 89, 98, 105, 113,

121, 128, 137, 144, 152, 160, 168,
175, 184, 192, 199, 206, 213, 221,
222, 238, 343, 350, 358, 367, 384,
397

col_vals_within_spec(), 385
conjointly, 24, 30, 36, 41, 47, 53, 59, 65, 70,

80, 89, 98, 105, 113, 121, 128, 137,
144, 152, 160, 168, 175, 184, 192,
199, 206, 213, 221, 230, 231, 343,
350, 358, 367, 384, 397

conjointly(), 242, 286, 293, 303
create_agent, 9, 239, 251, 260, 268, 281,

360, 390, 399, 407, 420
create_agent(), 4, 10, 16, 18, 19, 25, 26, 31,

36, 37, 42, 43, 48, 49, 54, 55, 60, 65,
66, 74, 75, 81, 83, 90, 92, 99, 100,
106, 107, 114, 115, 122, 123, 130,
131, 138, 139, 146, 147, 154, 155,
161, 162, 169, 170, 177, 178, 186,
187, 193, 194, 200, 201, 207, 208,
215, 216, 223, 224, 232, 233, 255,
260, 261, 269, 270, 272, 277, 279,
281, 287–289, 291, 293, 302, 329,
332, 336, 338, 339, 344, 345, 351,
352, 361, 362, 378, 379, 388, 391,
392, 397, 398, 400, 407, 421, 429,
442, 445

create_informant, 9, 246, 247, 260, 268,
281, 360, 390, 399, 407, 420

create_informant(), 255, 260, 276, 277,
281, 295, 296, 311–313, 316–318,
320, 322, 323, 326, 328, 374, 388,
397, 400, 429, 431, 445, 449

create_multiagent, 252, 301, 335
create_multiagent(), 244, 334

db_tbl, 9, 246, 251, 255, 268, 281, 360, 390,
399, 407, 420

deactivate_steps, 10, 261, 277, 336, 369,
428, 432

deactivate_steps(), 10, 336, 422
Deprecated, 241, 248, 353
dplyr::between(), 113
dplyr::case_when(), 113
draft_validation, 9, 246, 251, 260, 262,

281, 360, 390, 399, 407, 420

email_blast, 268, 273, 386, 387
email_blast(), 240, 273, 386

456 INDEX

email_create, 272, 272, 386, 387
email_create(), 269, 386
expect_col_count_match

(col_count_match), 18
expect_col_exists (col_exists), 24
expect_col_is_character

(col_is_character), 30
expect_col_is_date (col_is_date), 36
expect_col_is_factor (col_is_factor), 42
expect_col_is_integer (col_is_integer),

47
expect_col_is_logical (col_is_logical),

53
expect_col_is_numeric (col_is_numeric),

59
expect_col_is_posix (col_is_posix), 65
expect_col_schema_match

(col_schema_match), 73
expect_col_vals_between

(col_vals_between), 80
expect_col_vals_decreasing

(col_vals_decreasing), 89
expect_col_vals_equal (col_vals_equal),

98
expect_col_vals_expr (col_vals_expr),

106
expect_col_vals_gt (col_vals_gt), 113
expect_col_vals_gte (col_vals_gte), 121
expect_col_vals_in_set

(col_vals_in_set), 137
expect_col_vals_increasing

(col_vals_increasing), 129
expect_col_vals_lt (col_vals_lt), 145
expect_col_vals_lte (col_vals_lte), 152
expect_col_vals_make_set

(col_vals_make_set), 160
expect_col_vals_make_subset

(col_vals_make_subset), 168
expect_col_vals_not_between

(col_vals_not_between), 175
expect_col_vals_not_equal

(col_vals_not_equal), 185
expect_col_vals_not_in_set

(col_vals_not_in_set), 192
expect_col_vals_not_null

(col_vals_not_null), 200
expect_col_vals_null (col_vals_null),

207

expect_col_vals_regex (col_vals_regex),
214

expect_col_vals_within_spec
(col_vals_within_spec), 222

expect_col_vals_within_spec(), 385
expect_conjointly (conjointly), 231
expect_row_count_match

(row_count_match), 350
expect_rows_complete (rows_complete),

337
expect_rows_distinct (rows_distinct),

344
expect_serially (serially), 360
expect_specially (specially), 377
expect_tbl_match (tbl_match), 390
export_report, 10, 261, 274, 336, 369, 428,

432
export_report(), 242, 254, 286, 289, 358

file_tbl, 9, 246, 251, 260, 268, 277, 360,
390, 399, 407, 420

file_tbl(), 257, 281
from_github, 13, 16, 73, 281, 310, 387
from_github(), 277, 279

game_revenue, 283, 285, 370, 371, 385
game_revenue_info, 284, 284, 370, 371, 385
get_agent_report, 285, 331
get_agent_report(), 239, 240, 242, 246,

263, 274, 293, 298, 329, 426
get_agent_x_list, 18, 290, 295, 305, 426
get_agent_x_list(), 17, 242, 246, 269, 426
get_data_extracts, 18, 292, 293, 305, 426
get_data_extracts(), 242, 246, 426
get_informant_report, 295, 313
get_informant_report(), 247, 251, 274,

311, 316, 322, 328, 426
get_multiagent_report, 254, 297, 335
get_multiagent_report(), 244, 252, 254,

274
get_sundered_data, 18, 292, 295, 302, 426
get_sundered_data(), 242
get_tt_param, 306, 409, 412, 413, 415, 417,

419

has_columns, 13, 16, 73, 282, 308, 387
has_columns(), 20, 26, 32, 37, 43, 49, 55, 61,

66, 76, 83, 92, 100, 108, 115, 123,
131, 139, 147, 155, 162, 170, 178,

INDEX 457

187, 195, 202, 209, 216, 224, 233,
339, 346, 353, 363, 379, 392

I(), 255, 256, 288, 296, 298
incorporate, 296, 311
incorporate(), 247, 250, 276, 316, 322, 325,

326, 328, 371, 374, 375, 377, 427,
430, 431, 441, 444, 445, 451

info_columns, 313, 319, 322, 326, 329, 372,
375–377

info_columns(), 247, 251, 312, 317–319,
323, 371, 374, 375, 377

info_columns_from_tbl, 317, 317, 322, 326,
329, 372, 375–377

info_columns_from_tbl(), 251, 284, 318
info_section, 317, 319, 319, 326, 329, 372,

375–377
info_section(), 247, 312, 323
info_snippet, 317, 319, 322, 323, 329, 372,

375–377
info_snippet(), 247, 311, 312, 316, 322,

328, 371, 372, 374–377
info_tabular, 317, 319, 322, 326, 326, 372,

375–377
info_tabular(), 247, 319, 323, 328
interrogate, 290, 329
interrogate(), 16, 239, 242, 245, 272, 274,

275, 285, 293, 294, 302, 303, 308,
333, 421, 427, 429–431, 433, 434,
442, 443, 445, 449

log4r_step, 331
log4r_step(), 11

read_disk_multiagent, 254, 301, 334
read_disk_multiagent(), 244, 438
remove_steps, 10, 261, 277, 335, 369, 428,

432
rlang::expr(), 113
row_count_match, 24, 30, 36, 41, 47, 53, 59,

65, 70, 80, 89, 98, 105, 113, 121,
128, 137, 144, 152, 160, 168, 175,
184, 192, 199, 206, 213, 221, 230,
238, 343, 350, 350, 367, 384, 397

rows_complete, 24, 30, 36, 41, 47, 53, 59, 65,
70, 80, 89, 98, 105, 113, 121, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
337, 350, 358, 367, 384, 397

rows_distinct, 24, 30, 36, 41, 47, 53, 59, 65,
70, 80, 89, 98, 105, 113, 121, 128,
137, 144, 152, 160, 168, 175, 184,
192, 199, 206, 213, 221, 230, 238,
343, 344, 358, 367, 384, 397

rows_distinct(), 239, 246, 293

scan_data, 9, 246, 251, 260, 268, 281, 358,
390, 399, 407, 420

scan_data(), 291
serially, 24, 30, 36, 41, 47, 53, 59, 65, 70,

80, 89, 98, 105, 113, 121, 128, 137,
144, 152, 160, 168, 175, 184, 192,
199, 206, 213, 221, 230, 238, 343,
350, 358, 360, 384, 397

set_tbl, 10, 261, 277, 336, 368, 428, 432
set_tbl(), 388, 397, 421, 429, 445
small_table, 274, 276, 284, 285, 369, 371,

385, 429–431
small_table_sqlite, 284, 285, 370, 370,

385
snip_highest, 317, 319, 322, 326, 329, 371,

375–377
snip_highest(), 247, 324, 325
snip_list, 317, 319, 322, 326, 329, 372, 372,

376, 377
snip_list(), 247, 324
snip_lowest, 317, 319, 322, 326, 329, 372,

375, 375, 377
snip_lowest(), 247, 324
snip_stats, 317, 319, 322, 326, 329, 372,

375, 376, 376
snip_stats(), 247, 324
specially, 24, 30, 36, 41, 47, 53, 59, 65, 70,

80, 89, 98, 105, 113, 121, 128, 137,
144, 152, 160, 168, 175, 184, 192,
199, 206, 213, 221, 230, 238, 343,
350, 358, 367, 377, 397

specifications, 284, 285, 370, 371, 385
stock_msg_body, 272, 273, 386, 387
stock_msg_footer, 272, 273, 386, 386
stop_if_not, 13, 16, 73, 282, 310, 387
stop_on_fail (action_levels), 4

tbl_get, 9, 246, 251, 260, 268, 281, 360, 388,
399, 407, 420

tbl_get(), 259, 260, 280, 389, 397, 400–402,
404–406

458 INDEX

tbl_match, 24, 30, 36, 41, 47, 53, 59, 65, 70,
80, 89, 98, 105, 113, 121, 128, 137,
144, 152, 160, 168, 175, 184, 192,
199, 206, 213, 221, 230, 238, 343,
350, 358, 367, 384, 390

tbl_source, 9, 246, 251, 260, 268, 281, 360,
390, 397, 407, 420

tbl_source(), 260, 281, 388, 398, 400, 401,
406, 407, 439

tbl_store, 9, 246, 251, 260, 268, 281, 360,
390, 399, 399, 420

tbl_store(), 255, 259, 277, 280, 388, 389,
398, 404, 438, 439

test_col_count_match (col_count_match),
18

test_col_exists (col_exists), 24
test_col_is_character

(col_is_character), 30
test_col_is_date (col_is_date), 36
test_col_is_factor (col_is_factor), 42
test_col_is_integer (col_is_integer), 47
test_col_is_logical (col_is_logical), 53
test_col_is_numeric (col_is_numeric), 59
test_col_is_posix (col_is_posix), 65
test_col_schema_match

(col_schema_match), 73
test_col_vals_between

(col_vals_between), 80
test_col_vals_between(), 361
test_col_vals_decreasing

(col_vals_decreasing), 89
test_col_vals_equal (col_vals_equal), 98
test_col_vals_expr (col_vals_expr), 106
test_col_vals_gt (col_vals_gt), 113
test_col_vals_gte (col_vals_gte), 121
test_col_vals_in_set (col_vals_in_set),

137
test_col_vals_increasing

(col_vals_increasing), 129
test_col_vals_lt (col_vals_lt), 145
test_col_vals_lt(), 413
test_col_vals_lte (col_vals_lte), 152
test_col_vals_lte(), 307, 408
test_col_vals_make_set

(col_vals_make_set), 160
test_col_vals_make_subset

(col_vals_make_subset), 168
test_col_vals_make_subset(), 413

test_col_vals_not_between
(col_vals_not_between), 175

test_col_vals_not_equal
(col_vals_not_equal), 185

test_col_vals_not_in_set
(col_vals_not_in_set), 192

test_col_vals_not_null
(col_vals_not_null), 200

test_col_vals_null (col_vals_null), 207
test_col_vals_regex (col_vals_regex),

214
test_col_vals_within_spec

(col_vals_within_spec), 222
test_col_vals_within_spec(), 385
test_conjointly (conjointly), 231
test_row_count_match (row_count_match),

350
test_rows_complete (rows_complete), 337
test_rows_distinct (rows_distinct), 344
test_serially (serially), 360
test_specially (specially), 377
test_tbl_match (tbl_match), 390
testthat::skip_on_appveyor(), 422
testthat::skip_on_bioc(), 422
testthat::skip_on_ci(), 422
testthat::skip_on_covr(), 422
testthat::skip_on_cran(), 422
testthat::skip_on_os(), 422
testthat::skip_on_travis(), 422
testthat::test_that(), 421
tt_string_info, 308, 407, 412, 413, 415,

417, 419
tt_string_info(), 306, 413
tt_summary_stats, 308, 409, 409, 413, 415,

417, 419
tt_summary_stats(), 306, 307
tt_tbl_colnames, 308, 409, 412, 412, 415,

417, 419
tt_tbl_colnames(), 306
tt_tbl_dims, 308, 409, 412, 413, 414, 417,

419
tt_tbl_dims(), 306
tt_time_shift, 308, 409, 412, 413, 415, 415,

419
tt_time_slice, 308, 409, 412, 413, 415, 417,

417

validate_rmd, 9, 246, 251, 260, 268, 281,
360, 390, 399, 407, 420

INDEX 459

validate_rmd(), 387

warn_on_fail (action_levels), 4
write_testthat_file, 18, 292, 295, 305,

421

x_read_disk, 10, 261, 277, 336, 369, 426, 432
x_read_disk(), 244, 250, 334, 335, 428–432,

438
x_write_disk, 10, 261, 277, 336, 369, 428,

428
x_write_disk(), 11, 13, 16, 244, 250, 252,

334, 335, 426–428, 438, 439, 442

yaml_agent_interrogate, 433, 436, 438,
440, 442, 443, 445, 451

yaml_agent_interrogate(), 13, 16, 21, 28,
33, 39, 45, 51, 57, 62, 68, 77, 86, 95,
103, 110, 118, 126, 134, 142, 150,
158, 165, 173, 181, 190, 197, 204,
211, 219, 228, 236, 242, 270, 332,
341, 348, 355, 365, 381, 394,
399–401, 436, 438, 443, 445, 449

yaml_agent_show_exprs, 434, 434, 438, 440,
442, 443, 445, 451

yaml_agent_show_exprs(), 244, 333, 442
yaml_agent_string, 434, 436, 436, 440, 442,

443, 445, 451
yaml_agent_string(), 22, 28, 34, 40, 46, 52,

57, 63, 69, 78, 87, 95, 104, 111, 119,
127, 135, 143, 151, 158, 166, 174,
182, 191, 198, 205, 212, 220, 228,
236, 244, 333, 342, 349, 356, 365,
382, 395, 447, 448

yaml_exec, 434, 436, 438, 438, 442, 443, 445,
451

yaml_informant_incorporate, 434, 436,
438, 440, 441, 443, 445, 451

yaml_informant_incorporate(), 249, 315,
321, 324, 327, 400, 438, 444, 451

yaml_read_agent, 434, 436, 438, 440, 442,
442, 445, 451

yaml_read_agent(), 21, 28, 33, 39, 45, 51,
57, 62, 68, 77, 86, 95, 103, 110, 118,
126, 134, 142, 150, 158, 165, 173,
181, 190, 197, 204, 211, 219, 228,
236, 242, 270, 332, 341, 348, 355,
365, 381, 394, 433, 435, 436, 445,
448

yaml_read_informant, 434, 436, 438, 440,
442, 443, 444, 451

yaml_read_informant(), 249, 315, 321, 324,
327, 441, 450

yaml_write, 434, 436, 438, 440, 442, 443,
445, 445

yaml_write(), 11, 13, 21, 22, 28, 33, 34, 39,
40, 45, 46, 51, 52, 57, 62, 63, 68, 69,
77, 78, 86, 87, 95, 103, 104, 110,
111, 118, 119, 126, 127, 134, 135,
142, 143, 150, 151, 158, 165, 166,
173, 181, 182, 190, 191, 197, 198,
204, 205, 211, 212, 219, 220, 228,
236, 242, 244, 249, 270, 315, 321,
324, 327, 332, 341, 342, 348, 349,
355, 356, 365, 381, 382, 388, 394,
395, 397–400, 434–436, 438, 439,
442, 444

	action_levels
	activate_steps
	affix_date
	affix_datetime
	all_passed
	col_count_match
	col_exists
	col_is_character
	col_is_date
	col_is_factor
	col_is_integer
	col_is_logical
	col_is_numeric
	col_is_posix
	col_schema
	col_schema_match
	col_vals_between
	col_vals_decreasing
	col_vals_equal
	col_vals_expr
	col_vals_gt
	col_vals_gte
	col_vals_increasing
	col_vals_in_set
	col_vals_lt
	col_vals_lte
	col_vals_make_set
	col_vals_make_subset
	col_vals_not_between
	col_vals_not_equal
	col_vals_not_in_set
	col_vals_not_null
	col_vals_null
	col_vals_regex
	col_vals_within_spec
	conjointly
	create_agent
	create_informant
	create_multiagent
	db_tbl
	deactivate_steps
	draft_validation
	email_blast
	email_create
	export_report
	file_tbl
	from_github
	game_revenue
	game_revenue_info
	get_agent_report
	get_agent_x_list
	get_data_extracts
	get_informant_report
	get_multiagent_report
	get_sundered_data
	get_tt_param
	has_columns
	incorporate
	info_columns
	info_columns_from_tbl
	info_section
	info_snippet
	info_tabular
	interrogate
	log4r_step
	read_disk_multiagent
	remove_steps
	rows_complete
	rows_distinct
	row_count_match
	scan_data
	serially
	set_tbl
	small_table
	small_table_sqlite
	snip_highest
	snip_list
	snip_lowest
	snip_stats
	specially
	specifications
	stock_msg_body
	stock_msg_footer
	stop_if_not
	tbl_get
	tbl_match
	tbl_source
	tbl_store
	tt_string_info
	tt_summary_stats
	tt_tbl_colnames
	tt_tbl_dims
	tt_time_shift
	tt_time_slice
	validate_rmd
	write_testthat_file
	x_read_disk
	x_write_disk
	yaml_agent_interrogate
	yaml_agent_show_exprs
	yaml_agent_string
	yaml_exec
	yaml_informant_incorporate
	yaml_read_agent
	yaml_read_informant
	yaml_write
	Index

