The goal of this demo is to conduct a Bayesian Dynamic Borrowing (BDB) analysis using the hierarchical commensurate prior on a dataset.
# Load packages ----
library(psborrow2)
# Survival analysis
library(survival)
library(ggsurvfit)
library(flexsurv)
# Additional tools for draws objects
library(bayesplot)
library(posterior)
# Comparing populations
library(table1)##      id ext trt cov4 cov3 cov2 cov1       time status cnsr resp
## [1,]  1   0   0    1    1    1    0  2.4226411      1    0    1
## [2,]  2   0   0    1    1    0    1 50.0000000      0    1    1
## [3,]  3   0   0    0    0    0    1  0.9674372      1    0    1
## [4,]  4   0   0    1    1    0    1 14.5774738      1    0    1
## [5,]  5   0   0    1    1    0    0 50.0000000      0    1    0
## [6,]  6   0   0    1    1    0    1 50.0000000      0    1    0?example_matrix # for more details##    trt
## ext   0   1
##   0  50 100
##   1 350   0km_fit <- survfit(Surv(time = time, event = 1 - cnsr) ~ trt + ext,
  data = example_dataframe
)
ggsurvfit(km_fit)The internal and external control arms look quite different…
cox_fit <- coxph(Surv(time = time, event = 1 - cnsr) ~ trt,
  data = example_dataframe,
  subset = ext == 0
)
cox_fit## Call:
## coxph(formula = Surv(time = time, event = 1 - cnsr) ~ trt, data = example_dataframe, 
##     subset = ext == 0)
## 
##        coef exp(coef) se(coef)      z     p
## trt -0.1097    0.8961   0.1976 -0.555 0.579
## 
## Likelihood ratio test=0.3  on 1 df, p=0.5809
## n= 150, number of events= 114##         2.5 %   97.5 %
## trt 0.6083595 1.319842Let’s start by demonstrating the utility of BDB by trying to borrow data from the external control arm which we know experiences worse survival.
The end goal is to create an Analysis object with:
?create_analysis_objpsborrow2 allows the user to specify priors with the following functions:
?prior_bernoulli
?prior_beta
?prior_cauchy
?prior_exponential
?prior_gamma
?prior_normal
?prior_poisson
?prior_uniformPrior distributions can be plotted with the plot() method
psborrow2 currently supports 4 outcomes:
?outcome_surv_weibull_ph # Weibull survival w/ proportional hazards
?outcome_surv_exponential # Exponential survival
?outcome_bin_logistic # Logistic binary outcome
?outocme_cont_normal # Normal continuous outcomeBorrowing objects are created with:
?borrowing_hierarchical_commensurate # Hierarchical commensurate borrowing
?borrowing_none # No borrowing
?borrowing_full # Full borrowingTreatment objects are created with:
?treatment_detailsCombine everything and create object of class Analysis:
analysis_object <- create_analysis_obj(
  data_matrix = example_matrix,
  outcome = exp_outcome,
  borrowing = bdb_borrowing,
  treatment = trt_details
)## Inputs look good.## Stan program compiled successfully!## Ready to go! Now call `mcmc_sample()`.## Analysis Object
## 
## Outcome model: OutcomeSurvExponential 
## Outcome variables: time cnsr 
## 
## Borrowing method: Bayesian dynamic borrowing with the hierarchical commensurate prior 
## External flag: ext 
## 
## Treatment variable: trt 
## 
## Data: Matrix with 500 observations 
##     -  50  internal controls
##     -  350  external controls 
##     -  100  internal experimental
## 
## Stan model compiled and ready to sample.
##  Call mcmc_sample() next.Conduct MCMC sampling with:
?mcmc_sampleresults <- mcmc_sample(
  x = analysis_object,
  iter_warmup = 1000,
  iter_sampling = 5000,
  chains = 1
)## [1] "CmdStanMCMC" "CmdStanFit"  "R6"##  variable     mean   median   sd  mad       q5      q95 rhat ess_bulk ess_tail
##  lp__     -1617.95 -1617.57 1.52 1.28 -1620.95 -1616.17 1.00     1745     2439
##  beta_trt    -0.16    -0.16 0.20 0.20    -0.49     0.17 1.00     2413     2532
##  tau          1.19     0.49 1.91 0.67     0.00     4.69 1.00     2043     1716
##  alpha[1]    -3.36    -3.35 0.16 0.17    -3.63    -3.10 1.00     2355     2672
##  alpha[2]    -2.40    -2.40 0.06 0.05    -2.49    -2.31 1.00     3569     3165
##  HR_trt       0.87     0.85 0.18 0.17     0.61     1.19 1.00     2413     2532Dictionary to interpret parameters:
##   Stan_variable                        Description
## 1           tau         commensurability parameter
## 2      alpha[1] baseline log hazard rate, internal
## 3      alpha[2] baseline log hazard rate, external
## 4      beta_trt                   treatment log HR
## 5        HR_trt                       treatment HRCreate a draws object
Rename draws object parameters
Get 95% credible intervals with posterior package
## # A tibble: 6 × 4
##   variable                                `2.5%`     `50%`   `97.5%`
##   <chr>                                    <dbl>     <dbl>     <dbl>
## 1 lp__                               -1622.      -1618.    -1616.   
## 2 treatment log HR                      -0.557      -0.158     0.244
## 3 commensurability parameter             0.00108     0.486     6.39 
## 4 baseline log hazard rate, internal    -3.68       -3.35     -3.04 
## 5 baseline log hazard rate, external    -2.51       -2.40     -2.29 
## 6 treatment HR                           0.573       0.854     1.28Look at histogram of draws with bayesplot package
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.Our model does not borrow much from the external arm! This is the desired outcome given how different the control arms were.
Check balance between arms
table1(
  ~ cov1 + cov2 + cov3 + cov4 |
    factor(ext, labels = c("Internal RCT", "External data")) +
      factor(trt, labels = c("Not treated", "Treated")),
  data = example_dataframe
)| Internal RCT | External data | Overall | |||
|---|---|---|---|---|---|
| Not treated (N=50) | Treated (N=100) | Not treated (N=350) | Not treated (N=400) | Treated (N=100) | |
| cov1 | |||||
| Mean (SD) | 0.540 (0.503) | 0.630 (0.485) | 0.740 (0.439) | 0.715 (0.452) | 0.630 (0.485) | 
| Median [Min, Max] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 
| cov2 | |||||
| Mean (SD) | 0.200 (0.404) | 0.370 (0.485) | 0.500 (0.501) | 0.463 (0.499) | 0.370 (0.485) | 
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0.500 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] | 
| cov3 | |||||
| Mean (SD) | 0.760 (0.431) | 0.760 (0.429) | 0.403 (0.491) | 0.448 (0.498) | 0.760 (0.429) | 
| Median [Min, Max] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] | 1.00 [0, 1.00] | 
| cov4 | |||||
| Mean (SD) | 0.420 (0.499) | 0.460 (0.501) | 0.197 (0.398) | 0.225 (0.418) | 0.460 (0.501) | 
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] | 
Because the imbalance may be conditional on observed covariates, let’s adjust for propensity scores in our analysis
Create a propensity score model
ps_model <- glm(ext ~ cov1 + cov2 + cov3 + cov4,
  data = example_dataframe,
  family = binomial
)
ps <- predict(ps_model, type = "response")
example_dataframe$ps <- ps
example_dataframe$ps_cat_ <- cut(
  example_dataframe$ps,
  breaks = 5,
  include.lowest = TRUE
)
levels(example_dataframe$ps_cat_) <- c(
  "ref", "low",
  "low_med", "high_med", "high"
)Convert the data back to a matrix with dummy variables for
ps_cat_ levels
example_matrix_ps <- create_data_matrix(
  example_dataframe,
  outcome = c("time", "cnsr"),
  trt_flag_col = "trt",
  ext_flag_col = "ext",
  covariates = ~ps_cat_
)## Call `add_covariates()` with `covariates =  c("ps_cat_low", "ps_cat_low_med", "ps_cat_high_med", "ps_cat_high" ) `Propensity score analysis without borrowing
anls_ps_no_borrow <- create_analysis_obj(
  data_matrix = example_matrix_ps,
  covariates = add_covariates(
    c("ps_cat_low", "ps_cat_low_med", "ps_cat_high_med", "ps_cat_high"),
    prior_normal(0, 10000)
  ),
  outcome = outcome_surv_exponential("time", "cnsr", prior_normal(0, 10000)),
  borrowing = borrowing_none("ext"),
  treatment = treatment_details("trt", prior_normal(0, 10000))
)
res_ps_no_borrow <- mcmc_sample(
  x = anls_ps_no_borrow,
  iter_warmup = 1000,
  iter_sampling = 5000,
  chains = 1
)draws_ps_no_borrow <- rename_draws_covariates(
  res_ps_no_borrow$draws(),
  anls_ps_no_borrow
)
summarize_draws(draws_ps_no_borrow, ~ quantile(.x, probs = c(0.025, 0.50, 0.975)))## # A tibble: 8 × 4
##   variable                   `2.5%`    `50%`   `97.5%`
##   <chr>                       <dbl>    <dbl>     <dbl>
## 1 lp__                     -466.    -462.    -460.    
## 2 treatment log HR           -0.715   -0.346    0.0647
## 3 baseline log hazard rate   -4.72    -4.18    -3.71  
## 4 ps_cat_low                 -0.417    0.381    1.11  
## 5 ps_cat_low_med              0.437    0.995    1.58  
## 6 ps_cat_high_med             1.43     2.08     2.76  
## 7 ps_cat_high                 2.37     3.00     3.63  
## 8 treatment HR                0.489    0.707    1.07anls_ps_bdb <- create_analysis_obj(
  data_matrix = example_matrix_ps,
  covariates = add_covariates(
    c("ps_cat_low", "ps_cat_low_med", "ps_cat_high_med", "ps_cat_high"),
    prior_normal(0, 10000)
  ),
  outcome = outcome_surv_exponential("time", "cnsr", prior_normal(0, 10000)),
  borrowing = borrowing_hierarchical_commensurate("ext", prior_gamma(0.001, 0.001)),
  treatment = treatment_details("trt", prior_normal(0, 10000))
)
res_ps_bdb <- mcmc_sample(
  x = anls_ps_bdb,
  iter_warmup = 1000,
  iter_sampling = 5000,
  chains = 1
)draws_ps_bdb <- rename_draws_covariates(
  res_ps_bdb$draws(),
  anls_ps_bdb
)
summarize_draws(draws_ps_bdb, ~ quantile(.x, probs = c(0.025, 0.50, 0.975)))## # A tibble: 10 × 4
##    variable                               `2.5%`     `50%`    `97.5%`
##    <chr>                                   <dbl>     <dbl>      <dbl>
##  1 lp__                               -1426.     -1421.    -1418.    
##  2 treatment log HR                      -0.684     -0.352    -0.0260
##  3 commensurability parameter             0.0816    52.0    1372.    
##  4 baseline log hazard rate, internal    -4.64      -4.18     -3.76  
##  5 baseline log hazard rate, external    -4.65      -4.20     -3.78  
##  6 ps_cat_low                            -0.355      0.263     0.840 
##  7 ps_cat_low_med                         0.629      1.06      1.54  
##  8 ps_cat_high_med                        1.62       2.09      2.60  
##  9 ps_cat_high                            2.51       2.94      3.41  
## 10 treatment HR                           0.504      0.704     0.974It looks like PS + BDB allowed us to most accurately recover the true hazard ratio of 0.70.