quadVAR: Quadratic Vector Autoregression
Estimate quadratic vector autoregression models with the
strong hierarchy using the Regularization Algorithm under Marginality
Principle (RAMP) by Hao et al. (2018)
<doi:10.1080/01621459.2016.1264956>, compare the performance with
linear models, and construct networks with partial derivatives.
| Version: |
0.1.2 |
| Imports: |
cli, dplyr, ggplot2, magrittr, ncvreg, qgraph, RAMP, rlang, shiny, shinythemes, stats, stringr, tibble, tidyr |
| Suggests: |
nonlinearTseries, remotes, SIS, testthat (≥ 3.0.0) |
| Published: |
2025-02-11 |
| DOI: |
10.32614/CRAN.package.quadVAR |
| Author: |
Jingmeng Cui
[aut, cre] |
| Maintainer: |
Jingmeng Cui <jingmeng.cui at outlook.com> |
| BugReports: |
https://github.com/Sciurus365/quadVAR/issues |
| License: |
GPL (≥ 3) |
| URL: |
https://github.com/Sciurus365/quadVAR,
https://sciurus365.github.io/quadVAR/ |
| NeedsCompilation: |
no |
| Materials: |
README, NEWS |
| In views: |
TimeSeries |
| CRAN checks: |
quadVAR results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=quadVAR
to link to this page.