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NeuDist-package Univariate Continuous Distributions with Model Diagnostics
Description

Tools for univariate continuous distributions with model diagnostics, based on the Lindley, Logistic,
Half-Cauchy, Half-Logistic, and Poisson families, providing functions for probability density, dis-
tribution, quantile, and hazard evaluation, random variate generation, and generic diagnostic tools
such as Q—Q and P-P plots, goodness-of-fit tests, and model selection criteria, with support for 58
distributions and 15 data sets.

Details

Distributions in the ’NeuDist’ package:

ChenExp Chen-Exponential Distribution.

ExpoExpPower Exponentiated Exponential Power Distribution.
ExpoInvChen Exponentiated Inverse Chen Distribution.
GompertzExt Gompertz Extension Distribution.

HCChen Half-Cauchy Chen Distribution.

HCGenExp Half-Cauchy Generalized Exponential Distribution.



HCGenRayleigh
HCGompertz
HCInvGPZ
HCInvNHE

HCNHE

HLIW

HLNHE

InvEEP
InvExpPower
InvGenGPZ
InvPham
InvPowerCauchy
InvSGZ

InvUBD
LindleyChen
LindleyExpPower
LindleyGenInvExp
LindleyGompertz
LindleyHC
LindleyInvExp
LindleyInvWeibull
LindleyRayleigh
LogisChen
LogisExpExt
LogisExpPower
LogisGompertz
LogisInvExp
LogisInvLomax
LogisInvWeibull
LogisLomax
LogisModExp
LogisNHE
LogisRayleigh
LogisWeib
ModAtanExp
ModGE

ModInvGE
ModInvLomax
ModInvNHE
ModUbd
NewLindleyHC
Perks
PoisInvWeib
PoissonChen
PoissonExpPower
PoissonGenRayleigh
PoissonGPZ
PoissonInvLomax

NeuDist-package

Half-Cauchy Generalized Rayleigh Distribution.
Half-Cauchy Gompertz Distribution.

Half-Cauchy Inverse Gompertz Distribution.
Half-Cauchy Inverse NHE Distribution.
Half-Cauchy exponential extension Distribution.
Half Logistic Inverted Weibull Distribution.
Half Logistic NHE Distribution.

Inverse Exponentiated Exponential Poisson Distribution.
Inverse Exponential Power Distribution.
Inverse Generalized Gompertz Distribution.
Inverse Pham Distribution.

Inverse Power Cauchy Distribution.
Inverted Shifted Gompertz Distribution.
Inverse Upside Down Bathtub-Shaped Hazard Distribution.
Lindley-Chen Distribution.

Lindley Exponential Power Distribution.

Lindley Generalized Inverted Exponential Distribution.
Lindley Gompertz Distribution.

New Lindley Half Cauchy Distribution.

Lindley Inverse Exponential Distribution.

Lindley inverse Weibull Distribution.

New Lindley-Rayleigh Distribution.

Logistic Chen Distribution Distribution.

Logistic Exponential Extension Distribution.
Logistic-Exponential Power Distribution.

Logistic Gompertz Distribution.

Logistic Inverse Exponential Distribution.

Logistic Inverse Lomax Distribution.

Logistic Inverse Weibull Distribution.

Logistic Lomax Distribution.

Logistic-Modified Exponential Distribution.
Logistic-NHE Distribution.

Logistic-Rayleigh Distribution.

Logistic-Weibull Distribution.

Modified Arctan Exponential Distribution.

Modified Generalized Exponential Distribution.
Modified Inverse Generalized Exponential Distribution.
Modified Inverse Lomax Distribution.

Modified Inverse NHE Distribution.

Modified Upside Down Bathtub Shaped Hazard Function
New Lindley Half Cauchy Distribution.

Perks Distribution.

Poisson Inverse Weibull Distribution.

Poisson Chen Distribution.

Poisson Exponential Power Distribution.

Poisson Generalized Rayleigh Distribution.

Poisson Gompertz Distribution.

Poisson Inverted Lomax Distribution.



bladder

PoissonInvNHE
PoissonInvSGZ
PoissonNHE
PoissonSGZ

General functions:

gofic
pp.plot
qq.plot

Data:

bladder
conductors
fibers63
fibers65
fibers69
headneck44
rainfall
reactorpump
relief
stress
stress31
stress66
survtimes
waiting
windshield

Author(s)

Poisson Inverse NHE Distribution.

Poisson Inverse Shifted Gompertz Distribution.
Poisson NHE Distribution.

Poisson Shifted Gompertz Distribution.

Generic Goodness-of-Fit(GoF) and Model Diagnostics Function
Generic Probability-Probability(P-P) Plot Function
Generic Quantile-Quantile(Q-Q) Plot Function

Bladder Cancer Recurrence Times

Electromigration Failure Times of Microcircuit Conductors
Strength of 63 Carbon Fibers at 10 mm Gauge Length
Strength of 65 Carbon Fibers at 50 mm Gauge Length

Tensile Strength of 69 Carbon Fibers at 20 mm Gauge Length
Head and Neck Cancer Survival Times

March Rainfall in Minneapolis/St. Paul

Failure Time Intervals of Secondary Reactor Pumps

Relief Times of Patients Receiving an Analgesic

Breaking Stress of Carbon Fibres

Fatigue Life of 6061-T6 Aluminum Coupons under 31,000 psi
Breaking Stress of 66 Carbon Fibers of Length 50 mm
Survival Times of Guinea Pigs Infected with Tubercle Bacilli
Waiting Times of 100 Bank Customers

Service Times of Aircraft Windshields

Vijay Kumar <vkgkp@rediffmail.com>, Laxmi Prasad Sapkota <laxmi75@gmail.com>, Pankaj
Kumar <pankajagadish@ gmail.com>, Lal Babu Sah <lalbabu3131@ gmail.com>

Maintainer: Vijay Kumar <vkgkp @rediffmail.com>

bladder

Bladder Cancer Recurrence Times

Description

Recurrence times (in months) for bladder cancer patients, reported in Lee and Wang (2003). The
dataset contains observed survival times without censoring information and is commonly used in
survival analysis examples.

Usage
data(bladder)
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Format

A numeric vector giving recurrence times (in months) for bladder cancer patients. A total of 128
observations are included.

Details

These recurrence times are widely used in demonstrations of survival analysis methods, including
Kaplan—Meier estimation, hazard rate modelling, accelerated failure-time (AFT) models, and para-
metric distribution fitting. The dataset originally appears in Lee and Wang’s Statistical Methods for
Survival Data Analysis (3rd ed.), a standard reference text in biostatistics.

Note: The dataset provided here contains recurrence times only and does not include censoring
indicators or covariates found in extended versions of the bladder cancer data.

Value

An object of class "numeric”.

The vector consists of 128 observed recurrence times (in months), each corresponding to a single
bladder cancer patient. Each value represents the time from treatment or diagnosis to documented
cancer recurrence. The dataset is commonly used in survival analysis and biostatistics to illus-
trate time-to-event modeling, including Kaplan—Meier estimation, hazard rate analysis, accelerated
failure-time (AFT) models, and parametric survival distributions.

References

Lee, E. T., & Wang, J. W. (2003). Statistical Methods for Survival Data Analysis (3rd ed.). Wiley,
New York.

Examples

data(bladder)

# Basic summary
summary (bladder)

# Histogram of recurrence times

hist(
bladder,
main = "Bladder Cancer Recurrence Times",
xlab = "Time (months)"”

ChenExp Chen-Exponential Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Chen-
Exponential distribution.



ChenExp

Usage
dchen.exp(x, alpha, beta, lambda, log = FALSE)
pchen.exp(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gchen.exp(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rchen.exp(n, alpha, beta, lambda)
hchen.exp(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Chen-Exponential distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Chen-Exponential distribution has CDF:

F(x; a,8,)\) = 1—exp{/\{l—exp{(em—l)a}]}, x> 0.

where «, 3, and A are the parameters.

The following functions are included:

* dchen.exp() — Density function

¢ pchen.exp() — Distribution function
* qchen.exp() — Quantile function

* rchen.exp() — Random generation

¢ hchen.exp() — Hazard function

Value

* dchen.exp: numeric vector of (log-)densities
* pchen.exp: numeric vector of probabilities

¢ gchen.exp: numeric vector of quantiles

* rchen.exp: numeric vector of random variates

¢ hchen.exp: numeric vector of hazard values
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References

Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure
rate function. Statistics & Probability Letters, 49, 155-161.

Sapkota, L.P., & Kumar, V. (2023). Chen Exponential Distribution with Applications to Engineering
Data. International Journal of Statistics and Reliability Engineering, 10(1), 33-47.

Sapkota, L.P., Alsahangiti, A.M., Kumar, V. Gemeay, A.M., Bakr, M.E., Balogun, O.S., & Muse,
A.H. (2023). Arc-Tangent Exponential Distribution With Applications to Weather and Chemical
Data Under Classical and Bayesian Approach, IEEE Access, 11, 115462-115476. doi:10.1109/
ACCESS.2023.3324293

Examples

x <- seq(@.1, 1, 0.1)

dchen.exp(x, 1.5, 0.8, 2)

pchen.exp(x, 1.5, 0.8, 2)

gchen.exp(@.5, 1.5, 0.8, 2)

rchen.exp(10, 1.5, 0.8, 2)

hchen.exp(x, 1.5, 0.8, 2)

#Data

X <- stress

#ML Estimates

params = list(alpha=2.5462, beta=0.0537, lambda=87.6028)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pchen.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gchen.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics

# Display plot; numerical summary stored in 'out'

out <- gofic(x, params = params, dfun = dchen.exp,
pfun = pchen.exp, plot=TRUE)

print.gofic(out)

conductors Electromigration Failure Times of Microcircuit Conductors

Description

Failure-time data from an accelerated life test involving 59 microcircuit conductors. Electromigra-
tion refers to the movement of atoms in conductors under high current density, leading to eventual
failure. The dataset contains observed failure times (in hours), with no censored observations.

Usage

data(conductors)


https://doi.org/10.1109/ACCESS.2023.3324293
https://doi.org/10.1109/ACCESS.2023.3324293
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Format

A numeric vector of length 59 giving failure times in hours.

Details

Electromigration is a major wear-out mechanism in thin-film microelectronic circuits. Because
electric current accelerates atomic migration, accelerated life tests are widely used to study the re-
liability of conductors. This dataset has been used extensively in the reliability literature, including
analyses involving Weibull, lognormal, and power-lognormal lifetime models.

Value

An object of class "numeric”.

The vector consists of 59 observed failure times (in hours), each corresponding to a single micro-
circuit conductor subjected to an accelerated life test. Each value represents the elapsed operating
time until failure caused by electromigration. The dataset is commonly used in reliability engineer-
ing and lifetime data analysis to illustrate wear-out mechanisms and to fit and compare parametric
lifetime models such as the Weibull, lognormal, and power-lognormal distributions.

References

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John Wiley & Sons.

Nelson, W., & Doganaksoy, N. (1995). Statistical analysis of life or strength data from specimens of
various sizes using the power-(log)normal model. Recent Advances in Life-Testing and Reliability,
377-408.

Examples

data(conductors)

# Summary statistics
summary (conductors)

# Histogram of failure times
hist(conductors)

ExpoExpPower Exponentiated Exponential Power (EEP) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Exponen-
tiated Exponential Power (EEP) distribution.
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Usage

dgen.

pgen

ggen.
rgen.
hgen.

Arguments

X’q

alpha
lambda
theta

log

exp.power(x,
.exp.power(q,
exp.power(p,
exp.power(n,
exp.power(x,

lower.tail

log.p

p
n

Details

alpha, lambda, theta, log = FALSE)
alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta)
alpha, lambda, theta)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The EEP distribution is parameterized by the parameters o > 0, A > 0, and 6 > 0.

The Exponentiated Exponential Power (EEP) distribution has CDF:

F(z; a, A\, 0) =[1 —exp{l —exp (Az*)}]’

where o, A, and 6 are the parameters.

The implementation includes the following functions:

Value

dgen.
pgen.
ggen.
rgen.

hgen.

dgen.
pgen.
ggen.
rgen.

hgen.

exp

exp.
exp.
exp.

exp.

exp.
exp.
exp.
exp.

exp.

.power () — Density function

power:
power:
power:
power:

power:

power () — Distribution function
power () — Quantile function
power () — Random generation

power () — Hazard function

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

x>0

ExpoExpPower

FALSE)
FALSE)



ExpolnvChen 11

References

Sapkota, L.P., & Kumar, V.(2024). Bayesian Analysis of Exponentiated Exponential Power Distri-
bution under Hamiltonian Monte Carlo Method, Statistics and Applications. Statistics and Appli-
cations, 22(2), 231-258.

Srivastava, A.K., & Kumar, V.(2011). Analysis of Software Reliability Data using Exponential
Power Model. International Journal of Advanced Computer Science and Applications, 2(2), 3845,
doi:10.14569/1JACSA.2011.020208

Chen, Z.(1999). Statistical inference about the shape parameter of the exponential power distribu-
tion, Statistical Papers, 40, 459—468.

Smith, R.M., & Bain, L.J. (1975). An exponential power life-test distribution. IEEE Communica-
tions in Statistics, 4, 469-481.

Examples

x <- seq(@.1, 1, 0.1)

dgen.exp.power(x, 1.5, 0.8, 2)

pgen.exp.power(x, 1.5, 0.8, 2)

ggen.exp.power(@0.5, 1.5, 0.8, 2)

rgen.exp.power (10, 1.5, 0.8, 2)

hgen.exp.power(x, 1.5, 0.8, 2)

#Data

X <- waiting

#ML Estimates

params = list(alpha=0.3407, lambda=0.6068, theta=7.6150)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pgen.exp.power, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ggen.exp.power, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
# Neither plot nor console output; results stored in 'out'
out <- gofic(x, params = params,
dfun = dgen.exp.power, pfun = pgen.exp.power, plot=FALSE)
print.gofic(out)

ExpoInvChen Exponentiated Inverse Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Exponen-
tiated Inverse Chen distribution.


https://doi.org/10.14569/IJACSA.2011.020208
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Usage

dexpo.inv.
pexpo.inv.
gexpo.inv.
rexpo.inv.
hexpo.inv.

Arguments

X, q

alpha
lambda
theta

log
lower.tail
log.p

p

n

Details

ExpolnvChen
chen(x, alpha, lambda, theta, log = FALSE)
chen(qg, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
chen(p, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
chen(n, alpha, lambda, theta)
chen(x, alpha, lambda, theta)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Exponentiated Inverse Chen distribution is parameterized by the parameters o > 0, A > 0, and

0 > 0.

The Exponentiated Inverse Chen distribution has CDF:

0

F(z;a,\0)=1— [1 — exp ()\ (1 — exp(x*a)))] , x>0.

where a, A, and 6 are the parameters.

The functions available are listed below:

e dexpo.inv.chen() — Density function

* pexpo.
e gexpo.
* rexpo.

* hexpo.

Value

e dexpo.
* pexpo.
* gexpo.
* rexpo.

* hexpo.

inv.
inv.
inv.

inv.

inv.
inv.
inv.
inv.

inv.

chen() — Distribution function

chen() — Quantile function

chen() — Random generation

chen() — Hazard function

chen:
chen:
chen:
chen:

chen:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values
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References

Telee, L. B. S., & Kumar, V. (2023). Exponentiated Inverse Chen distribution: Properties and appli-
cations. Journal of Nepalese Management Academia, 1(1), 53-62. doi:10.3126/jnma.v1i1.62033

Srivastava, A.K., & Kumar, V.(2011). Markov Chain Monte Carlo Methods for Bayesian Inference
of the Chen Model. International Journal of Computer Information Systems, 2(2), 7-14.

Examples

x <- seq(2, 5, 0.25)
dexpo.inv.chen(x, 0.5, 2.5, 1.5)
pexpo.inv.chen(x, 0.5, 2.5, 1.5)
gexpo.inv.chen(0.5, 0.5, 2.5, 1.5)
rexpo.inv.chen(10, 0.5, 2.5, 1.5)
hexpo.inv.chen(x, 0.5, 2.5, 1.5)

# Data

x <- headneck44

# ML estimates

params = list(alpha=0.3947, lambda=15.5330, theta=8.1726)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pexpo.inv.chen, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gexpo.inv.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
# Display plot and print numerical summary
gofic(x, params = params,
dfun = dexpo.inv.chen, pfun=pexpo.inv.chen, plot=TRUE, verbose = TRUE)

fibers63 Strength of 63 Carbon Fibers at 10 mm Gauge Length

Description

Measurements of tensile strength (in gigapascals, GPa) for 63 single carbon fibers tested at a gauge
length of 10 mm. These data were originally reported by Bader and Priest (1982) in their study of
fibre and bundle strength in hybrid composites.

Usage
fibers63

Format

A numeric vector of length 63 containing tensile strength measurements (in GPa).


https://doi.org/10.3126/jnma.v1i1.62033
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Details

The dataset contains tensile strength values for individual carbon fibers cut to a gauge length of 10
mm. This dataset has been used extensively in materials science and reliability studies for modeling
strength distributions and assessing variability in carbon fiber performance.

The data originate from the same experimental study that produced several related carbon-fiber
datasets (e.g., fibers65, fibers69).

Value

An object of class "numeric”.

The vector consists of 63 observed tensile strength measurements (in gigapascals), each corre-
sponding to an individual carbon fiber tested at a gauge length of 10 mm. Each value represents
the breaking strength of a single fiber specimen. The dataset is commonly used in materials sci-
ence and reliability engineering for modeling strength distributions, assessing variability, and fitting
parametric lifetime or strength models.

References

Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fibre and bundle strength in hybrid
composites. Progress in Science and Engineering of Composites, 1129-1136.

Examples

data(fibers63)
summary (fibers63)

hist(
fibers63,
main = "Tensile Strength of Carbon Fibers (10 mm Gauge Length)",
xlab = "Strength (GPa)"

)

fibers65 Strength of 65 Carbon Fibers at 50 mm Gauge Length

Description

Tensile strength measurements (in gigapascals, GPa) for 65 carbon fibers tested under tension at a
gauge length of 50 mm. These data were originally reported by Bader and Priest (1982) in their
foundational study on fibre and bundle strength in hybrid composites.

Usage
fibers65
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Format

A numeric vector of length 65 containing tensile strength values (in GPa).

Details

The fibers were tested at a gauge length of 50 mm to study the variability of carbon fiber strength
under controlled conditions. This dataset is frequently used in reliability analysis, composite ma-
terial modeling, and strength distribution studies. It is one of several datasets originating from the
Bader and Priest (1982) carbon-fiber experiments.

Value

An object of class "numeric”.

The vector contains 65 observed tensile strength measurements (in gigapascals) of individual carbon
fibers tested at a gauge length of 50 mm. Each element represents the breaking strength of a single
fiber specimen. The dataset is typically used as input for statistical modeling, reliability analysis,
and lifetime or strength distribution studies in composite materials research.

References

Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fibre and bundle strength in hybrid
composites. Progress in Science and Engineering of Composites, 1129-1136.

Examples

data(fibers65)
summary (fibers65)

plot(
fibers65,
ylab = "Strength (GPa)",
main = "Carbon Fiber Strength (50 mm Gauge Length)”

)

hist(
fibers65,
main = "Histogram of Carbon Fiber Strength”,
xlab = "Strength (GPa)"

)

fibers69 Tensile Strength of 69 Carbon Fibers at 20 mm Gauge Length
Description

Measurements of tensile strength (in gigapascals, GPa) for 69 carbon fibers tested under tension at
a gauge length of 20 mm. These data were originally reported by Bader and Priest (1982) in their
study of fibre and bundle strength in hybrid composites.
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Usage
fibers69

Format

A numeric vector of length 69 containing tensile strength values (in GPa).

Details

This dataset has been widely used in composite-material and reliability studies, particularly for
modeling strength distributions of carbon fibers. The original experiment measured the tensile
strength of individual fibers at a gauge length of 20 mm, providing insight into the statistical behav-
ior of fiber strength under tension.

Value

An object of class "numeric”.

The vector consists of 69 tensile strength measurements (in gigapascals) corresponding to individ-
ual carbon fiber specimens tested at a gauge length of 20 mm. Each value represents the breaking
strength of a single fiber. The dataset is commonly used for statistical analysis of strength distribu-
tions, reliability modeling, and comparative studies of gauge-length effects in composite materials.

References

Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fibre and bundle strength in hybrid
composites. Progress in Science and Engineering of Composites, 1129-1136.

Examples

data(fibers69)
summary (fibers69)

hist(
fibers69,
main = "Tensile Strength of Carbon Fibers (20 mm Gauge Length)”,
xlab = "Strength (GPa)"

)

gofic Generic Goodness-of-Fit(GoF) and Model Diagnostics Function

Description

Computes log-likelihood, information criteria (AIC, BIC, AICC, HQIC) and classical goodness-
of-fit statistics (Kolmogorov—Smirnov, Cramér—von Mises, Anderson—Darling) for a given numeric
data vector and user-supplied density and distribution functions.
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Usage

Arguments

X
params

dfun
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gofic(x, params, dfun, pfun, plot = TRUE, verbose = FALSE)
Numeric vector of observed data. Must contain at least two values.
Named list of model parameters passed to dfun and pfun.
A probability density function with signature dfun(x, ...) returning numeric
densities.
A cumulative distribution function with signature pfun(q, ...) returning cu-

pfun

plot

verbose

Details

mulative probabilities.
Logical; if TRUE, plots empirical vs theoretical CDF. Default is TRUE.
Logical; if TRUE, prints the output object. Default is FALSE.

Optionally plots the empirical cumulative distribution function (ECDF) against the theoretical cu-
mulative distribution function.

The supplied dfun and pfun must accept arguments x and q respectively, followed by named model
parameters. Density values must be finite and positive; non-positive densities trigger a warning but
computation proceeds.

Value

An object of class "gofic” containing:

* loglLik Numeric; log-likelihood value.

e AIC Akaike Information Criterion.

* BIC Bayesian Information Criterion.

¢ AICC Corrected Akaike Information Criterion.

* HQIC Hannan—Quinn Information Criterion.

* KS Object returned by stats: :ks.test().

* CVM Object returned by goftest::cvm.test().

* AD Object returned by goftest::ad.test().

* n Sample size.

* params Model parameters supplied.

The object is returned invisibly.

See Also

print.gofic, ks.test, cvm. test, ad. test
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Examples

# Example 1 with built-in Weibull distribution

set.seed(123)

X <- rweibull(100, shape = 2, scale = 1)

out <- gofic(x, params = list(shape = 2, scale = 1),
dfun = dweibull, pfun = pweibull, plot=FALSE)

out

# Example 2: For a user defined distribution

# Goodness-of-Fit(GoF) and Model Diagnostics for Chen-Exponential distribution
#Data

X <- stress

#ML Estimates

params = list(alpha=2.5462, beta=0.0537, lambda=87.6028)

# Display plot and print numerical summary

gofic(x, params = params,

dfun = dchen.exp, pfun = pchen.exp, plot = TRUE, verbose = TRUE)

# Display plot only (no numerical summary)
gofic(x, params = params,
dfun = dchen.exp, pfun = pchen.exp, plot = TRUE, verbose = FALSE)

# Print numerical summary only (no plot)
gofic(x, params = params,
dfun = dchen.exp, pfun = pchen.exp, plot

FALSE, verbose = TRUE)
# Display plot; numerical summary stored in 'out'
out <- gofic(x, params = params,

dfun = dchen.exp, pfun = pchen.exp, plot = TRUE, verbose = FALSE)
print.gofic(out)

# Neither plot nor console output; results stored in 'out'
out <- gofic(x, params = params,

dfun = dchen.exp, pfun = pchen.exp, plot = FALSE, verbose = FALSE)
print.gofic(out)

GompertzExt Gompertz Extension Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Gompertz
Extension distribution.
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Usage

dgompertz.ext(x,
pgompertz.ext(q,
ggompertz.ext(p,
rgompertz.ext(n,
hgompertz.ext(x,

Arguments

X, q
alpha
lambda
theta

log
lower.tail
log.p

p

n

Details
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alpha, lambda, theta, log = FALSE)

alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta)

alpha, lambda, theta)

FALSE)
FALSE)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Gompertz Extension distribution is parameterized by the parameters « > 0, A > 0, and 6 > 0.

The Gompertz Extension distribution has CDF:

F(z;a, N\, 0) = 1—exp{—)\(em”—1)9} ;x> 0.

where a, A, and 6 are the parameters.

The functions available are listed below:

e dgompertz.
* pgompertz.

* ggompertz.

* rgompertz

* hgompertz.

Value

e dgompertz.
* pgompertz.
* ggompertz.
* rgompertz.

* hgompertz.

ext () — Density function

ext () — Distribution function

ext () — Quantile function

.ext() — Random generation

ext () — Hazard function

ext:
ext:
ext:
ext:

ext:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values



20 HCChen

References

Chaudhary, A.K., & Kumar, V. (2020). A Bayesian Estimation and Prediction of Gompertz Ex-
tension Distribution Using the MCMC Method. Nepal Journal of Science and Technology(NJST),
19(1), 142-160. doi:10.3126/njst.v19i1.29795

Examples

x <- seq(1.90, 10, 0.25)
dgompertz.ext(x, 0.1, 5.0, 2.5)
pgompertz.ext(x, 0.1, 5.0, 2.5)
ggompertz.ext(0.5, 0.1, 5.0, 2.5)
rgompertz.ext(10, 0.1, 5.0, 2.5)
hgompertz.ext(x, 0.1, 5.0, 2.5)

# Data

X <- stress

# ML estimates

params = list(alpha=0.0678, lambda=44.34760, theta=2.5225)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pgompertz.ext, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ggompertz.ext, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dgompertz.ext, pfun=pgompertz.ext, plot=TRUE)
print.gofic(out)

HCChen Half-Cauchy Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Chen distribution.

Usage

dhc.chen(x, beta, lambda, theta, log = FALSE)

phc.chen(q, beta, lambda, theta, lower.tail = TRUE, log.p
ghc.chen(p, beta, lambda, theta, lower.tail = TRUE, log.p
rhc.chen(n, beta, lambda, theta)

hhc.chen(x, beta, lambda, theta)

FALSE)
FALSE)


https://doi.org/10.3126/njst.v19i1.29795
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Arguments
X, q numeric vector of quantiles (X, q)
beta positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)

Details

The Half-Cauchy Chen distribution is parameterized by the parameters 8 > 0, A > 0, and 6 > 0.
The Half-Cauchy Chen distribution has CDF:

F(x7B7A79): iarctan{—;\(l_elg)} cx > 0.

where (3, A, and 0 are the parameters.

Included functions are:

e dhc.chen() — Density function

¢ phc.chen() — Distribution function
¢ ghc.chen() — Quantile function

* rhc.chen() — Random generation
* hhc.chen() — Hazard function

Value

* dhc.chen: numeric vector of (log-)densities
* phc.chen: numeric vector of probabilities

* ghc.chen: numeric vector of quantiles

* rhc.chen: numeric vector of random variates

¢ hhc.chen: numeric vector of hazard values

References

Chaudhary, A.K., Yadav, R.S., & Kumar, V.(2023). Half-Cauchy Chen Distribution with Theories
and Applications. Journal of Institute of Science and Technology, 28(1), 45-55. doi:10.3126/
jist.v28i1.56494

Polson, N.G., & Scott, J.G. (2012). On the half-Cauchy prior for a global scale parameter. Bayesian
Analysis, 7(4), 887-902.

Telee, L.B.S., & Kumar, V.(2024). Arctan-Chen Distribution with Properties and Application. In-
ternational Journal of Statistics and Reliability Engineering, 11(1), 93—100.


https://doi.org/10.3126/jist.v28i1.56494
https://doi.org/10.3126/jist.v28i1.56494
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Examples

x <- seq(1.0, 5, 0.25)
dhc.chen(x, 2.0, 0.5, 2.5)
phc.chen(x, 2.0, 0.5, 2.5)
ghc.chen(0.5, 2.0, 0.5, 2.5)
rhc.chen(10, 2.0, 0.5, 2.5)
hhc.chen(x, 2.0, 0.5, 2.5)

# Data

X <- conductors

# ML estimates

params = list(beta=0.9753, lambda=0.0398, theta=29.0272)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.chen, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = ghc.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,

dfun = dhc.chen, pfun=phc.chen, plot=FALSE)
print.gofic(res)

HCGenExp Half-Cauchy Generalized Exponential(HCGE) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Generalized Exponential(HCGE) distribution.

Usage

dhc.gen.exp(x, alpha, lambda, theta, log = FALSE)
phc.gen.exp(q, alpha, lambda, theta, lower.tail = TRUE, log.p
ghc.gen.exp(p, alpha, lambda, theta, lower.tail = TRUE, log.p
rhc.gen.exp(n, alpha, lambda, theta)

hhc.gen.exp(x, alpha, lambda, theta)

FALSE)
FALSE)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
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log.p

p
n

Details

The HCGE distribution is parameterized by the parameters « > 0, A > 0, and 6 > 0.

logical; if TRUE, probabilities are given as log(p)
numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The HCGE distribution has CDF:

] _ 2 o _x )
F(z;a,\,0) = 1—;arctan[—§1n(1—e ’”)} ;x> 0.

where «, A, and 6 are the parameters.

The implementation includes the following functions:

Value

dhc.
phc.
ghc.
rhc.
hhc.

dhc.
phc.
ghc.
rhc.
hhc.

References

gen

gen

gen.
gen.

gen.

gen.
gen.
gen.

gen.

gen

.exp() — Density function
.exp() — Distribution function
exp() — Quantile function
exp() — Random generation

exp() — Hazard function

exp: numeric vector of (log-)densities
exp: numeric vector of probabilities
exp: numeric vector of quantiles

exp: numeric vector of random variates

.exp: numeric vector of hazard values
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Chaudhary, A.K., Sapkota, L.P. & Kumar, V. (2022). Half-Cauchy Generalized Exponential Dis-
tribution:Theory and Application. Journal of Nepal Mathematical Society (JNMS), 5(2), 1-10.
doi:10.3126/jnms.v5i2.50018

Gupta, R. D., & Kundu, D. (1999). Generalized exponential distributions. Australian and New
Zealand Journal of Statistics, 41(2), 173-188.

Examples

x <- seq(0.1, 10, 0.2)

dhc.
phc.
ghc.
rhc.
hhc.

gen.exp(x, 2.0, 0.5, 0.1)
gen.exp(x, 2.0, 0.5, 0.1)
gen.exp(0.5, 2.0, 0.5, 0.1)
gen.exp(10, 2.0, 0.5, 0.1)
gen.exp(x, 2.0, 0.5, 0.1)

# Data


https://doi.org/10.3126/jnms.v5i2.50018
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x <- conductors

# ML estimates

params = list(alpha=6.6141, lambda=0.9352, theta=0.0103)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.gen.exp, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = ghc.gen.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,

dfun = dhc.gen.exp, pfun=phc.gen.exp, plot=FALSE)
print.gofic(res)

HCGenRayleigh Half-Cauchy Generalized Rayleigh Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Generalized Rayleigh distribution.

Usage

dhc.gen.rayleigh(x, alpha, lambda, theta, log = FALSE)

phc.gen.rayleigh(q, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
ghc.gen.rayleigh(p, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rhc.gen.rayleigh(n, alpha, lambda, theta)
hhc.gen.rayleigh(x, alpha, lambda, theta)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details
The Half-Cauchy Generalized Rayleigh distribution is parameterized by the parameters o« > 0,
A>0,and 6 > 0.
The Half-Cauchy Generalized Rayleigh distribution has CDF:

F(z;a,\,0) = 1—garctan{—%log{l—e_()“”)Q}} ;x> 0.

™

where «, A, and 6 are the parameters.

The implementation includes the following functions:

e dhc.gen.rayleigh() — Density function

e phc.gen.rayleigh() — Distribution function
¢ ghc.gen.rayleigh() — Quantile function

* rhc.gen.rayleigh() — Random generation

¢ hhc.gen.rayleigh() — Hazard function

Value

e dhc.gen.rayleigh: numeric vector of (log-)densities
* phc.gen.rayleigh: numeric vector of probabilities

* ghc.gen.rayleigh: numeric vector of quantiles

¢ rhc.gen.rayleigh: numeric vector of random variates

¢ hhc.gen.rayleigh: numeric vector of hazard values

References

Sapkota, L.P., & Kumar, V. (2023). Half-Cauchy Generalized Rayleigh : Theory and Applica-
tions.South East Asian J. Math. & Math. Sc., 19(1), 335-360. doi:10.56827/SEAIMMS.2023.1901.27

Shrestha, S.K., & Kumar, V. (2014). Bayesian Analysis for the Generalized Rayleigh Distribution.
International Journal of Statistika and Mathematika, 9(3), 118-131.

Kundu, D., & Ragab, M.Z. (2005). Generalized Rayleigh Distribution: Different Methods of Esti-
mation. Computational Statistics and Data Analysis, 49, 187-200.

Examples

x <- seq(1.0, 5, 0.25)
dhc.gen.rayleigh(x, 2.0, 0.5, 0.1)
phc.gen.rayleigh(x, 2.0, 0.5, 0.1)
ghc.gen.rayleigh(0.5, 2.0, 9.5, 0.1)
rhc.gen.rayleigh(10, 2.0, 0.5, 0.1)
hhc.gen.rayleigh(x, 2.0, 0.5, 0.1)

# Data

X <- stress66

# ML estimates

params = list(alpha=1.4585, lambda=0.5300, theta=0.1655)


https://doi.org/10.56827/SEAJMMS.2023.1901.27
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#P—P (probability-probability) plot
pp.plot(x, params = params, pfun = phc.gen.rayleigh, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ghc.gen.rayleigh, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dhc.gen.rayleigh, pfun=phc.gen.rayleigh, plot=FALSE)
print.gofic(out)

HCGompertz Half-Cauchy Gompertz Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Gompertz distribution.

Usage

dhc.gpz(x, alpha, lambda, theta, log = FALSE)

phc.gpz(q, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
ghc.gpz(p, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rhc.gpz(n, alpha, lambda, theta)

hhc.gpz(x, alpha, lambda, theta)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details
The Half-Cauchy Gompertz distribution is parameterized by the parameters & > 0, A > 0, and
6> 0.
The Half-Cauchy Gompertz distribution has CDF:

2
F(z;a,\,0) = arctan{—oz\g(l—e(”)} ;x> 0.

s

where «, A, and 0 are the parameters.

The implementation includes the following functions:

e dhc.gpz() — Density function

¢ phc.gpz() — Distribution function
e ghc.gpz() — Quantile function

* rhc.gpz() — Random generation

¢ hhc.gpz() — Hazard function

Value

* dhc.gpz: numeric vector of (log-)densities

* phc.gpz: numeric vector of probabilities

* ghc.gpz: numeric vector of quantiles

¢ rhc.gpz: numeric vector of random variates

¢ hhc.gpz: numeric vector of hazard values

References

Sah, L.B., & Kumar, V. (2019). Half-Cauchy Gompertz Distribution : Different Methods of Esti-
mation, Journal of National Academy of Mathematics, 33, 51-65.

Examples

x <- seq(1.0, 5, 0.25)
dhc.gpz(x, 2.0, 0.5, 2.5)
phc.gpz(x, 2.0, 0.5, 2.5)
ghc.gpz(0.5, 2.0, 0.5, 2.5)
rhc.gpz(10, 2.0, 0.5, 2.5)
hhc.gpz(x, 2.0, 0.5, 2.5)

# Data

X <- stress66

# ML estimates

params = list(alpha=1.6660, lambda=0.0328, theta=2.0578)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.gpz, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
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qq.plot(x, params = params, gfun = ghc.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params, dfun=dhc.gpz, pfun=phc.gpz, plot=TRUE)

print.gofic(out)

HCInvGPZ

Half-Cauchy Inverse Gompertz Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Inverse Gompertz distribution.

Usage

dhc.
phc.
ghc.
rhc.
hhc.

inv
inv
inv
inv
inv

Arguments

X’q

alpha
lambda
theta

log

.gpz(x,
.gpz(q,
.gpz(p,
.gpz(n,
.gpz(x,

lower.tail

log.p

p
n

Details

alpha, lambda, theta, log = FALSE)

alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta, lower.tail = TRUE, log.p
alpha, lambda, theta)

alpha, lambda, theta)

FALSE)
FALSE)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Half-Cauchy Inverse Gompertz distribution is parameterized by the parameters o > 0, A > 0,
and 6 > 0.

The Half-Cauchy Inverse Gompertz distribution has CDF:

2 A
. _ _“ N _ ajx .
F(z;a, N, 6) 1 - arctan{ o0 (1 e )} ;x> 0.

where a, A, and 6 are the parameters.

The implementation includes the following functions:
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e dhc.inv.gpz() — Density function

¢ phc.inv.gpz() — Distribution function
e ghc.inv.gpz() — Quantile function

* rhc.inv.gpz() — Random generation

e hhc.inv.gpz() — Hazard function

Value

e dhc.inv.gpz: numeric vector of (log-)densities
* phc.inv.gpz: numeric vector of probabilities

* ghc.inv.gpz: numeric vector of quantiles

¢ rhc.inv.gpz: numeric vector of random variates

e hhc.inv.gpz: numeric vector of hazard values

References

Chaudhary, A. K., Yadav, R. S., & Kumar, V. (2022). Half-Cauchy Inverse Gompertz distribution:
Theory and applications. International Journal of Statistics and Applied Mathematics, 7(5), 94—
102. doi:10.22271/maths.2022.v7.i5b.885

Examples

x <- seq(1.0, 10, 0.25)
dhc.inv.gpz(x, 2.0, 0.5, 2.5)
phc.inv.gpz(x, 2.0, 0.5, 2.5)
ghc.inv.gpz(0.5, 2.0, 0.5, 2.5)
rhc.inv.gpz(10, 2.0, 0.5, 2.5)
hhc.inv.gpz(x, 2.0, 0.5, 2.5)

# Data

x <- relief

# ML estimates

params = list(alpha=9.0830, lambda=0.8369, theta=17.9925)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.inv.gpz, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = ghc.inv.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dhc.inv.gpz, pfun=phc.inv.gpz, plot=TRUE)
print.gofic(out)


https://doi.org/10.22271/maths.2022.v7.i5b.885
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HCInvNHE Half-Cauchy Inverse NHE Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy Inverse NHE distribution.

Usage

dhc.inv.NHE(x, beta, lambda, theta, log = FALSE)

phc.inv.NHE(q, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
ghc.inv.NHE(p, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rhc.inv.NHE(n, beta, lambda, theta)
hhc.inv.NHE(x, beta, lambda, theta)
Arguments
X, q numeric vector of quantiles (X, q)
beta positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Half-Cauchy Inverse NHE distribution is parameterized by the parameters 5 > 0, A > 0, and
0 > 0.

The Half-Cauchy Inverse NHE distribution has CDF:

B
F(r:5,),0) = 1—2arctan[—1{1_<1+)‘) H s
™ 0 T

where (3, A, and 6 are the parameters.

Included functions are:

* dhc.inv.NHE() — Density function

¢ phc.inv.NHE () — Distribution function
¢ ghc.inv.NHE() — Quantile function

* rhc.inv.NHE() — Random generation
¢ hhc.inv.NHE() — Hazard function
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Value

e dhc.inv.NHE: numeric vector of (log-)densities
* phc.inv.NHE: numeric vector of probabilities

* ghc.inv.NHE: numeric vector of quantiles

* rhc.inv.NHE: numeric vector of random variates

e hhc.inv.NHE: numeric vector of hazard values

References

Chaudhary, A.K., Telee, L.B.S. & Kumar,V. (2022). Half-Cauchy Inverse NHE Distribution: Prop-
erties and Applications. Nepal Journal of Mathematical Sciences (NJMS), 3(2), 1-12. doi:10.3126/
njmathsci.v3i2.49198

Chaudhary, A. K., Sapkota, L. P., & Kumar, V. (2022). Some properties and applications of half
Cauchy extended exponential distribution. Int. J. Stat. Appl. Math., 71(4), 226-235. doi:10.22271/
maths.2022.v7.i4¢.866

Chaudhary, A.K., & Kumar, V. (2022). Half Cauchy-Modified Exponential Distribution: Properties
and Applications. Nepal Journal of Mathematical Sciences (NJMS), 3(1), 47-58. doi:10.3126/
njmathsci.v3il.44125

Examples

x <- seq(1.0, 5, 0.25)
dhc.inv.NHE(x, 2.0, 0.5, 2.5)
phc.inv.NHE(x, 2.0, 0.5, 2.5)
ghc.inv.NHE(@.5, 2.0, 0.5, 2.5)
rhc.inv.NHE(10, 2.0, 0.5, 2.5)
hhc.inv.NHE(x, 2.0, 0.5, 2.5)

# Data

x <- relief

# ML estimates

params = list(beta=79.7799, lambda=0.1129, theta=154.1769)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.inv.NHE, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ghc.inv.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,

dfun = dhc.inv.NHE, pfun=phc.inv.NHE, plot=FALSE)
print.gofic(res)


https://doi.org/10.3126/njmathsci.v3i2.49198
https://doi.org/10.3126/njmathsci.v3i2.49198
https://doi.org/10.22271/maths.2022.v7.i4c.866
https://doi.org/10.22271/maths.2022.v7.i4c.866
https://doi.org/10.3126/njmathsci.v3i1.44125
https://doi.org/10.3126/njmathsci.v3i1.44125
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HCNHE Half-Cauchy NHE Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Cauchy NHE distribution.

Usage

dhc.NHE(x, beta, lambda, theta, log = FALSE)

phc.NHE(qg, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
ghc.NHE(p, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rhc.NHE(n, beta, lambda, theta)

hhc.NHE(x, beta, lambda, theta)

Arguments
X, q numeric vector of quantiles (X, q)
beta positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Half-Cauchy NHE distribution is parameterized by the parameters 5 > 0, A > 0, and 6 > 0.
The Half-Cauchy NHE distribution has CDF:

F(z;8,\,0) = iarctan{—; (1-( +)\x)ﬁ)}, x> 0.

where 3, A, and 0 are the parameters.

The implementation includes the following functions:
e dhc.NHE() — Density function

phc.NHE () — Distribution function
¢ ghc.NHE () — Quantile function

rhc.NHE() — Random generation
hhc.NHE () — Hazard function
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Value

* dhc.NHE: numeric vector of (log-)densities
* phc.NHE: numeric vector of probabilities

* ghc.NHE: numeric vector of quantiles

* rhc.NHE: numeric vector of random variates

¢ hhc.NHE: numeric vector of hazard values

References

Chaudhary, A. K., & Kumar, V.(2021). Arctan Exponential Extension Distribution with Properties
and Applications. International Journal of Applied Research (IJAR), 7(1), 432-442. doi:10.22271/
allresearch.2021.v7.11£.8251

Telee, L. B. S., & Kumar, V. (2022). Some properties and applications of half-Cauchy exponential
extension distribution. Int. J. Stat. Appl. Math., 7(6), 91-101. doi:10.22271/maths.2022.v7.16b.902

Kumar, V. (2010). Bayesian analysis of exponential extension model. J. Nat. Acad. Math., 24,
109-128.

Examples

x <- seq(1.0, 5, 0.25)
dhc.NHE(x, 2.0, 0.5, 2.5)
phc.NHE(x, 2.0, 0.5, 2.5)
ghc.NHE(@.5, 2.0, 0.5, 2.5)
rhc.NHE(10, 2.0, 0.5, 2.5)
hhc.NHE(x, 2.0, 0.5, 2.5)

# Data

X <- stress66

# ML estimates

params = list(beta=95.2115, lambda=0.0184, theta=118.0656)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = phc.NHE, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = ghc.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dhc.NHE, pfun=phc.NHE, plot=TRUE)
print.gofic(out)


https://doi.org/10.22271/allresearch.2021.v7.i1f.8251
https://doi.org/10.22271/allresearch.2021.v7.i1f.8251
https://doi.org/10.22271/maths.2022.v7.i6b.902
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headneck44 Head and Neck Cancer Survival Times

Description

A dataset containing survival times (in days) of 44 patients with Head and Neck cancer who were
treated using radiotherapy. The dataset was originally reported by Efron (1988) in his work on
logistic regression, survival analysis, and Kaplan—-Meier methods.

Usage

headneck44

Format

A numeric vector of length 44 containing survival times (in days).

Details

This dataset has been widely used in survival analysis literature, particularly for demonstrating
Kaplan—Meier estimation and related nonparametric survival techniques. The patients in the study
were treated with radiotherapy, and their survival times were recorded.

Value

An object of class "numeric”.

The vector consists of 44 observed survival times (in days), each corresponding to a single patient
diagnosed with Head and Neck cancer and treated with radiotherapy. Each value represents the
time from treatment initiation to death or last follow-up. The dataset is commonly used as input
for illustrating and comparing nonparametric survival analysis methods, including Kaplan—Meier
estimation.

References

Efron, B. (1988). Logistic regression, survival analysis and the Kaplan—Meier curve. Journal of the
American Statistical Association, 83(402), 414-425.

Examples
summary (headneck44)
plot(
headneck44,
main = "Head and Neck Cancer Survival Times",
ylab = "Days”

)
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HLIW

Half-Logistic Inverted Weibull (HLIW) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Logistic Inverted Weibull distribution.

Usage
dHL.inv.weib(x, alpha, beta, lambda, log = FALSE)
pHL.inv.weib(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gHL.inv.weib(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rHL.inv.weib(n, alpha, beta, lambda)
hHL.inv.weib(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric shape parameter
beta positive numeric rate parameter
lambda positive numeric shape parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The HLIW distribution is parameterized by shape parameters o > 0, 8 > 0, and A > 0.
The Half-Logistic Inverted Weibull (HLIW) distribution has CDF:

—ax—B A
F(x;a,ﬂ,»l{le )

= +: x*>0.
1+ {1—e="}

where «a, 3, and A are the parameters.

The implementation includes the following functions:

dHL.inv.weib() — Density function
pHL.inv.weib() — Distribution function
gHL.inv.weib() — Quantile function
rHL.inv.weib() — Random generation

hHL . inv.weib() — Hazard function
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Value

e dHL.inv.weib: numeric vector of (log-)densities

* pHL.inv.weib: numeric vector of probabilities

e gHL.inv.weib: numeric vector of quantiles

e rHL.inv.weib: numeric vector of random variates

e hHL.inv.weib: numeric vector of hazard values
References

Elgarhy, M., ul Haq, M.A. & Perveen, 1. (2019). Type II Half Logistic Exponential Distribution
with Applications. Ann. Data. Sci., 6, 245-257 doi:10.1007/s407450180175y

Chaudhary, A. K., & Kumar, V. (2020). Half Logistic Exponential Extension Distribution with
Properties and Applications. International Journal of Recent Technology and Engineering (IJRTE),
8(3), 506-512. doi:10.35940/ijrte.C4625.099320

Dhungana, G.P. & Kumar, V.(2022). Half Logistic Inverted Weibull Distribution: Properties and
Applications. J. Stat. Appl. Pro. Lett., 9(3), 161-178. doi:10.18576/jsapl/090306

Examples

x <- seq(@.1, 5, 0.1)
dHL.inv.weib(x, 1.5, 0.8
pHL.inv.weib(x, 1.5, 0.8,
gHL.inv.weib(0@.5, 1.5, 0.8, 2)
rHL.inv.weib(10, 1.5, 0.8, 2)
hHL.inv.weib(x, 1.5, 0.8, 2)

’ 2)
2)

#Data
X <- survtimes
gofic(x,
params = list(alpha=31.1650, beta=0.4213, lambda=45.5485),
dfun = dHL.inv.weib, pfun = pHL.inv.weib, plot=TRUE, verbose = TRUE)

pp.plot(x,
params = list(alpha=31.1650, beta=0.4213, lambda=45.5485),
pfun = pHL.inv.weib, fit.line=TRUE)

aq.plot(x,
params = list(alpha=31.1650, beta=0.4213, lambda=45.5485),
gfun = gHL.inv.weib, fit.line=TRUE)

HLNHE Half-Logistic NHE(Nadarajah-Haghighi Exponential) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Half-
Logistic NHE distribution.


https://doi.org/10.1007/s40745-018-0175-y
https://doi.org/10.35940/ijrte.C4625.099320
https://doi.org/10.18576/jsapl/090306
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Usage

dHL.nhe(x, alpha, beta, lambda, log = FALSE)

pHL.nhe(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gHL.nhe(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rHL.nhe(n, alpha, beta, lambda)

hHL .nhe(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Half-Logistic NHE distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Half-Logistic NHE distribution has CDF:

1 —exp [A{l—(l—i—aw)ﬂH .

Flz; a,f,A) = 1+ exp {)\{1* (1+O‘x)ﬁ}] |

x> 0.

where «, 3, and \ are the parameters.

The functions available are listed below:

* dHL.nhe() — Density function

¢ pHL.nhe() — Distribution function
¢ gHL.nhe() — Quantile function

* rHL.nhe() — Random generation
¢ hHL.nhe() — Hazard function

Value

e dHL.nhe: numeric vector of (log-)densities

e pHL.nhe: numeric vector of probabilities

e gHL.nhe: numeric vector of quantiles

* rHL.nhe: numeric vector of random variates

¢ hHL.nhe: numeric vector of hazard values



References

InvEEP

Almarashi, A. M., Elgarhy, M., Elsehetry, M. M., Kibria, B. G., & Algarni, A. (2019). A new ex-
tension of exponential distribution with statistical properties and applications. Journal of Nonlinear

Sciences and Applications, 12, 135-145.

Chaudhary, A.K., & Kumar, V.(2020). Half Logistic Modified Exponential Distribution:Properties
and Applications. EPRA International Journal of Multidisciplinary Research (IJMR), 6(12),276—

286. doi:10.36713/epra3291

Joshi, R. K., & Kumar, V. (2020). Half Logistic NHE: Properties and Application. International
Journal for Research in Applied Science & Engineering Technology (IJRASET), 8(9), 742-753.

doi:10.22214/ijraset.2020.31557

Nadarajah, S., & Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6),

Examples

543-558.

x <- seq(0.1, 1, 0.1)
dHL.nhe(x, 1.5, 0.8, 2)
pHL.nhe(x, 1.5, 0.8, 2)
gHL.nhe(0@.5, 1.5, 0.8, 2)

rHL.nhe(10, 1.5, 0.8, 2)
hHL.nhe(x, 1.5, 0.8, 2)

#Data

x <- windshield

#ML Estimates

params = list(alpha =0.1649, beta=3.7152, lambda=0.5881)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pHL.nhe, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gHL.nhe, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dHL.nhe, pfun = pHL.nhe, plot=FALSE)
print.gofic(out)

InvEEP

Inverse Exponentiated Exponential Poisson (IEEP) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverse

Exponentiated Exponential Poisson distribution.


https://doi.org/10.36713/epra3291
https://doi.org/10.22214/ijraset.2020.31557

InvEEP

Usage

dinv
pinv
ginv
rinv
hinv

.expo.
.expo.
.expo.
.expo.
.expo.

Arguments

X’q

alpha

beta

lambda

log

lower.tail

log.p

p
n

Details

exp.pois(x,
exp.pois(q,
exp.pois(p,
exp.pois(n,
exp.pois(x,
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alpha, beta, lambda, log = FALSE)

alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
alpha, beta, lambda)

alpha, beta, lambda)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Inverse Exponentiated Exponential Poisson distribution is parameterized by the parameters
a>0,8>0,and A > 0.

The Inverse Exponentiated Exponential Poisson distribution has CDF:

F(z; a,8,\) =1— ﬁ {1 —exp{—)\(l - e_ﬂ/x)aH ;x> 0.

where «, 3, and \ are the parameters.

The implementation includes the following functions:

Value

dinv
pinv
ginv
rinv.

hinv

dinv
pinv.
ginv.
rinv

hinv

.expo.
.expo.

.expo.

expo.

.expo.

.expo.

expo.

expo.

.expo.

.expo.

exp.
exp.
exp.
exp.

exp.

exp.
exp.
exp.
exp.

exp.

pois() — Density function

pois() — Distribution function

pois() — Quantile function

pois() — Random generation

pois() — Hazard function

pois:
pois:
pois:
pois:

pois:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values
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References

Ristic, M.M., & Nadarajah, S.(2014). A New Lifetime Distribution. Journal of Statistical Compu-
tation and Simulation, 84(1), 135-150. doi:10.1080/00949655.2012.697163

Telee, L. B. S., & Kumar, V. (2023). Inverse Exponentiated Exponential Poisson Distribution with
Theory and Applications. International Journal of Engineering Science Technologies, 7(5), 17-36.
doi:10.29121/1IJOEST.v7.15.2023.535

Examples

x <- seq(@.1, 1, 0.1)

dinv.expo.exp.pois(x, 1.5, 0.8, 2)
pinv.expo.exp.pois(x, 1.5, 0.8, 2)
ginv.expo.exp.pois(@0.5, 1.5, 0.8, 2)

rinv.expo.exp.pois(10, 1.5, 0.8, 2)
hinv.expo.exp.pois(x, 1.5, 0.8, 2)

#Data

x <- conductors

#ML Estimates

params = list(alpha =40.5895, beta=22.7519, lambda=2.9979)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pinv.expo.exp.pois, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.expo.exp.pois, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics

res <- gofic(x, params = params, dfun = dinv.expo.exp.pois,
pfun = pinv.expo.exp.pois, plot=FALSE)

print.gofic(res)

InvExpPower Inverse Exponential Power Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverse
Exponential Power distribution.

Usage

dinv.exp.power(x, alpha, lambda, log = FALSE)
pinv.exp.power(q, alpha, lambda, lower.tail = TRUE, log.p
ginv.exp.power(p, alpha, lambda, lower.tail = TRUE, log.p
rinv.exp.power(n, alpha, lambda)

hinv.exp.power(x, alpha, lambda)

FALSE)
FALSE)


https://doi.org/10.1080/00949655.2012.697163
https://doi.org/10.29121/IJOEST.v7.i5.2023.535

InvExpPower

Arguments
X, q
alpha
lambda
log

lower.tail

log.p
p

n

Details

41

numeric vector of quantiles (X, q)

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Inverse Exponential Power distribution is parameterized by the parameters o > 0 and A > 0.

The Inverse Exponential Power distribution has CDF:

F(z;a,\) = exp{l—exp(i) }; x> 0.

where « and A are the parameters.

The implementation includes the following functions:

e dinv.
* pinv.
* ginv.
* rinv.

e hinv.

Value
e dinv.
* pinv.
* ginv.
* rinv.

e hinv.

References

exp

exp.
exp.
exp.

exp.

exp.
exp.
exp.
exp.

exp.

.power () — Density function

power:
power:
power:
power:

power:

power () — Distribution function
power () — Quantile function
power () — Random generation

power () — Hazard function

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Chaudhary, A.K., Sapkota,L.P. & Kumar, V.(2023). Inverse Exponential Power distribution: Theory
and Applications. International Journal of Mathematics, Statistics and Operations Research, 3(1),

175-185.
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Examples

x <- seq(1.9, 5.0, 0.2)
dinv.exp.power(x, 2.5, 0.5)
pinv.exp.power(x, 2.5, 0.5)
ginv.exp.power(@0.5, 2.5, 0.5)
rinv.exp.power(10, 2.5, 0.5)
hinv.exp.power(x, 2.5, 0.5)

# Data

x <- relief

# ML estimates
params = list(alpha=2.8286, lambda=1.3346)
#P-P (probability-probability) plot
pp.plot(x, params = params, pfun = pinv.exp.power, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.exp.power, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,
= dinv.exp.power, pfun=pinv.exp.power, plot=FALSE)

dfun

print.gofic(out)

InvGenGPZ

InvGenGPZ

Inverse Generalized Gompertz Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverse
Generalized Gompertz distribution.

Usage

dinv.gen
pinv.gen
ginv.gen
rinv.gen
hinv.gen

Arguments
X, q
alpha
lambda
theta
log

.gpz(x,
.gpz(q,
.gpz(p,
.gpz(n,
.gpz(x,

alpha, lambda, theta, log = FALSE)

alpha, lambda, theta, lower.tail
alpha, lambda, theta, lower.tail
alpha, lambda, theta)
alpha, lambda, theta)

numeric vector of quantiles (x, q)
positive numeric parameter
positive numeric parameter
positive numeric parameter

logical; if TRUE, returns log-density

TRUE, log.p
TRUE, log.p

FALSE)
FALSE)
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lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Inverse Generalized Gompertz distribution is parameterized by the parameters o > 0, A > 0,
and 6 > 0.

The Inverse Generalized Gompertz distribution has CDF:

Flz;a,)\0) =1— {1 — exp <2 1- exp(a/x))ﬂe . x> 0.

where «, A, and 6 are the parameters.

The implementation includes the following functions:

e dinv.gen.gpz() — Density function

e pinv.gen.gpz() — Distribution function
e ginv.gen.gpz() — Quantile function

* rinv.gen.gpz() — Random generation

¢ hinv.gen.gpz() — Hazard function

Value

* dinv.gen.gpz: numeric vector of (log-)densities
* pinv.gen.gpz: numeric vector of probabilities

* ginv.gen.gpz: numeric vector of quantiles

e rinv.gen.gpz: numeric vector of random variates

e hinv.gen.gpz: numeric vector of hazard values

References
Chaudhary, A K., & Kumar, V. (2017). Inverse Generalized Gompertz Distribution with Properties
and Applications. Journal of National Academy of Mathematics, 31, 1-15.

Examples

x <- seq(2, 5, 0.25)

dinv.gen.gpz(x, 1.5, 2.5, 5.0)
pinv.gen.gpz(x, 1.5, 2.5, 5.0)
ginv.gen.gpz(0.5, 1.5, 2.5, 5.0)

rinv.gen.gpz(10, 1.5, 2.5, 5.0)
hinv.gen.gpz(x, 1.5, 2.5, 5.0)

# Data
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x <- fibers63

# ML estimates

params = list(alpha=3.4106, lambda=5.4685, theta=20.9199)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pinv.gen.gpz, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = ginv.gen.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dinv.gen.gpz, pfun=pinv.gen.gpz, plot=TRUE)
print.gofic(out)

InvPham Inverse Pham Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverse
Pham distribution.

Usage
dinv.pham(x, beta, delta, log = FALSE)
pinv.pham(q, beta, delta, lower.tail = TRUE, log.p = FALSE)
ginv.pham(p, beta, delta, lower.tail = TRUE, log.p = FALSE)
rinv.pham(n, beta, delta)
hinv.pham(x, beta, delta)
Arguments
X, q numeric vector of quantiles (X, q)
beta positive numeric parameter
delta positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details

The Inverse Pham distribution is parameterized by the parameters 5 > 0, and § > 0.
The Inverse Pham distribution has CDF:

F(x;8,0) = exp (1 —69675) ;x> 0.

wheref3 and § are the parameters.

The following functions are included:

e dinv.pham() — Density function

e pinv.pham() — Distribution function
¢ ginv.pham() — Quantile function

* rinv.pham() — Random generation

¢ hinv.pham() — Hazard function

Value

e dinv.pham: numeric vector of (log-)densities
* pinv.pham: numeric vector of probabilities

* ginv.pham: numeric vector of quantiles

¢ rinv.pham: numeric vector of random variates

¢ hinv.pham: numeric vector of hazard values

References

Elbatal, M., Araibi, M.LA., Ocloo, S.K., Almetwally, E.M., Sapkota, L.P., & Gemeay, A.M. (2025).
Classical and Bayesian Methodology for a New Inverse Statistical Model. Engineering Reports,
7(8), 1-33. doi:10.1002/eng2.70323

Srivastava, A.K., & Kumar, V. (2011). Analysis of Pham (Loglog) Reliability Model Using Bayesian
Approach. Computer Science Journal, 1(2), 79-100.

Pham, H. (2002). A Vtub-Shaped Hazard Rate Function With Applications to System Safety. In-
ternational Journal of Reliability and Applications, 3(1), 1-16.

Examples

x <- seq(1, 10, 0.5)
dinv.pham(x, 0.5, 1.5)
pinv.pham(x, .5, 1.5)
ginv.pham(0.5, 0.5, 1.5)
rinv.pham(10, 0.5, 1.5)
hinv.pham(x, 0.5, 1.5)

# Data

x <- relief

# ML estimates

params = list(beta=2.8287, delta=9.6044)
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#P—P (probability-probability) plot
pp.plot(x, params = params, pfun = pinv.pham, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.pham, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dinv.pham, pfun=pinv.pham, plot=FALSE)
print.gofic(out)

InvPowerCauchy Inverse Power Cauchy Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Inverse
Power Cauchy distribution.

Usage

dinv.pow.cauchy(x, alpha, lambda, log = FALSE)

pinv.pow.cauchy(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
ginv.pow.cauchy(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rinv.pow.cauchy(n, alpha, lambda)
hinv.pow.cauchy(x, alpha, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Inverse Power Cauchy distribution is parameterized by the parameters o > 0 and A > 0.

The Inverse Power Cauchy distribution has CDF:

F(z;a,)\) = 1—27n 'tan™! KA> ]; x> 0.
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where o and A are the parameters.

The following functions are included:

e dinv.pow.cauchy() — Density function

e pinv.pow.cauchy() — Distribution function
¢ ginv.pow.cauchy() — Quantile function

* rinv.pow.cauchy() — Random generation

e hinv.pow.cauchy() — Hazard function

Value

e dinv.pow.cauchy: numeric vector of (log-)densities

* pinv.pow.cauchy: numeric vector of probabilities

* ginv.pow.cauchy: numeric vector of quantiles

* rinv.pow.cauchy: numeric vector of random variates

¢ hinv.pow. cauchy: numeric vector of hazard values

References

Sapkota L. P., & Kumar V. (2023). Applications and Some Characteristics of Inverse Power Cauchy
Distribution. Reliability: Theory & Applications. 18, 1(72), 301-315. doi:10.24412/19322321-
2023172301315

Chaudhary, A.K., Sapkota, L.P., & Kumar, V. (2020). Truncated Cauchy Power—Inverse Exponen-
tial distribution: Theory and Applications. IOSR Journal of Mathematics (IOSR-JM), 16(4), Ser.IV,
12-23.

Examples

x <- seq(0.1, 10, 0.2)
dinv.pow.cauchy(x, 2.0, 5.0)
pinv.pow.cauchy(x, 2.0, 5.0)
ginv.pow.cauchy (0.5, 2.0, 5.0)
rinv.pow.cauchy(10, 2.0, 5.0)
hinv.pow.cauchy(x, 2.0, 5.0)

# Data

x <- headneck44

# ML estimates

params = list(alpha=1.4271, lambda=123.5294)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pinv.pow.cauchy, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.pow.cauchy, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,
dfun = dinv.pow.cauchy, pfun=pinv.pow.cauchy, plot=FALSE)


https://doi.org/10.24412/1932-2321-2023-172-301-315
https://doi.org/10.24412/1932-2321-2023-172-301-315
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print.gofic(res)

InvSGZ

Inverted Shifted Gompertz (I1SG) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverted
Shifted Gompertz distribution.

Usage
dinv.sgz(x, alpha, theta, log = FALSE)
pinv.sgz(q, alpha, theta, lower.tail = TRUE, log.p = FALSE)
ginv.sgz(p, alpha, theta, lower.tail = TRUE, log.p = FALSE)
rinv.sgz(n, alpha, theta)
hinv.sgz(x, alpha, theta)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Inverted Shifted Gompertz distribution is parameterized by the parameters o > 0, and 6 > 0.
The Inverted Shifted Gompertz distribution has CDF:

F(z;a,0)=1-— (1 — 6_9/7”) exp (—ae_e/l> ;x> 0.

wherea and 6 are the parameters.

The following functions are included:

e dinv.sgz() — Density function

pinv.
ginv.
rinv.

hinv.

sgz () — Distribution function
sgz () — Quantile function
sgz() — Random generation

sgz () — Hazard function
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Value

* dinv.sgz: numeric vector of (log-)densities
* pinv.sgz: numeric vector of probabilities

* ginv.sgz: numeric vector of quantiles

* rinv.sgz: numeric vector of random variates

* hinv.sgz: numeric vector of hazard values

References

Chaudhary, A.K., Sapkota, L.P., & Kumar, V. (2020). Inverted Shifted Gompertz Distribution with
Theory and Applications. Pravaha, 26(1), 1-10. doi:10.3126/pravaha.v26il.41645

Jimenez T.F. (2014). Estimation of the Parameters of the Shifted Gompertz Distribution, Using
Least Squares, Maximum Likelihood and Moments Methods. Journal of Computational and Ap-
plied Mathematics, 255(1) 867-877.

Examples

x <- seq(1.0, 5, 0.25)
dinv.sgz(x, 25, 10)
pinv.sgz(x, 25, 10)
ginv.sgz (0.5, 25, 10)
rinv.sgz(10, 25, 10)
hinv.sgz(x, 25, 10)

# Data

x <- fibers65

# ML estimates

params = list(alpha=215.8181, theta=12.7678)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pinv.sgz, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.sgz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dinv.sgz, pfun=pinv.sgz, plot=FALSE)
print.gofic(out)

InvUBD Inverse Upside Down Bathtub-shaped Hazard Function Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Inverse
Upside Down Bathtub-shaped Hazard Function distribution.


https://doi.org/10.3126/pravaha.v26i1.41645
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Usage
dinv.ubd(x, alpha, beta, lambda, log = FALSE)
pinv.ubd(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
ginv.ubd(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rinv.ubd(n, alpha, beta, lambda)
hinv.ubd(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Inverse Upside Down Bathtub-shaped Hazard Function distribution is parameterized by the
parameters « > 0, 8 > 0, and A > 0.

The Inverse Upside Down Bathtub-shaped Hazard Function distribution has CDF:

F(z; o, B,\) = exp [1 -1+ )\x*ﬁ)a} , x>0.

where «, 3, and A are the parameters.

The functions available are listed below:

e dinv.
* pinv.

* ginv.

* rinv

e hinv

Value

e dinv.
* pinv.
* ginv.
* rinv.

e hinv.

ubd() — Density function
ubd () — Distribution function

ubd() — Quantile function

.ubd() — Random generation
.ubd() — Hazard function

ubd: numeric vector of (log-)densities
ubd: numeric vector of probabilities
ubd: numeric vector of quantiles

ubd: numeric vector of random variates

ubd: numeric vector of hazard values
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References

Dimitrakopoulou, T., Adamidis, K., & Loukas, S.(2007). A liftime distribution with an upside down
bathtub-shaped hazard function, IEEE Trans. on Reliab., 56(2), 308-311.

Joshi, R.K., & Kumar, V. (2018). Inverse Upside Down Bathtub-Shaped Hazard Function distribu-
tion: Theory and Applications. Journal of National Academy of Mathematics, 32, 6-20.

Examples
x <- seq(@.1, 1, 0.1)
dinv.ubd(x, 1.5, 0.8, 2)
pinv.ubd(x, 1.5, 0.8, 2)
qinv.ubd(0.5, 1.5, 0.8, 2)

rinv.ubd(10, 1.5, 0.8, 2)
hinv.ubd(x, 1.5, 0.8, 2)

#Data

X <- rainfall

#ML Estimates

params = list(alpha =0.1804, beta=4.3216, lambda=85.13)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pinv.ubd, fit.line=TRUE)

#Q0-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = ginv.ubd, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dinv.ubd, pfun = pinv.ubd, plot=FALSE)
print.gofic(out)

LindleyChen Lindley-Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-
Chen distribution.

Usage

dlindley.chen(x, alpha, lambda, theta, log = FALSE)
plindley.chen(q, alpha, lambda, theta, lower.tail = TRUE, log.p
glindley.chen(p, alpha, lambda, theta, lower.tail = TRUE, log.p
rlindley.chen(n, alpha, lambda, theta)

hlindley.chen(x, alpha, lambda, theta)

FALSE)
FALSE)
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Arguments

X, q

alpha
lambda
theta

log
lower.tail
log.p

p

n

Details

LindleyChen

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Lindley-Chen distribution is parameterized by the parameters a > 0, A > 0, and 6 > 0.
The Lindley-Chen distribution has CDF:

Flzia )\ 0) =1— [1A<£9> (16“)} exp{)\G (176”)}, x> 0.

where «, A, and 6 are the parameters.

The functions available are listed below:

* dlindley.chen() — Density function

e plindley.
e glindley.
* rlindley.
* hlindley.

Value
e dlindley.
e plindley.
e glindley.
e rlindley.
e hlindley.

References

chen() — Distribution function

chen() — Quantile function

chen() — Random generation

chen() — Hazard function

chen:
chen:
chen:
chen:

chen:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Bhati, D., Malik, M. A., & Vaman, H. J. (2015). Lindley—Exponential distribution: properties and
applications. Metron, 73(3), 335-357.

Joshi, R. K., & Kumar, V. (2020). Lindley-Chen Distribution with Applications. International
Journal of Engineering, Science & Mathematics (IJESM), 9(10), 12-22.
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Examples

x <- seq(1.0, 3.0, 0.25)
dlindley.chen(x, 0.5, 2, 0.5)
plindley.chen(x, 0.5, 2, 0.5)
glindley.chen(@.5, 0.5, 2, 90.5)
rlindley.chen(10, 0.5, 2, 0.5)
hlindley.chen(x, 0.5, 2, 0.5)

# Data

x <- fibers65

# ML estimates

params = list(alpha=1.26813, lambda=28.96389, theta=0.00355)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.chen, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glindley.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.chen, pfun=plindley.chen, plot=FALSE)
print.gofic(out)

LindleyExpPower Lindley-Exponential Power Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-
Exponential Power distribution.

Usage

dlind.exp.pow(x, alpha, lambda, theta, log = FALSE)
plind.exp.pow(q, alpha, lambda, theta, lower.tail = TRUE, log.p
glind.exp.pow(p, alpha, lambda, theta, lower.tail = TRUE, log.p
rlind.exp.pow(n, alpha, lambda, theta)

hlind.exp.pow(x, alpha, lambda, theta)

FALSE)
FALSE)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter

log logical; if TRUE, returns log-density
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lower.tail
log.p
p

n

Details

LindleyExpPower

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Lindley-Exponential Power distribution is parameterized by the parameters o > 0, A > 0, and

0> 0.

The Lindley-Exponential Power distribution has CDF:

Fz;a,\0)= 1-— {1 — (&) (1 — e(m)(x)] exp {9 (1 — e(m)a)} ;x> 0.

where «, A, and 6 are the parameters.

The following functions are included:

e dlind.exp.
e plind.
e glind.
e rlind.

* hlind.

Value

e dlind

e plind.
e glind.
* rlind.

* hlind.

References

exp.

exp

exp.

exp.

.exp.
exp.
exp.
exp.

exp.

pow() — Density function

pow() — Distribution function

.pow() — Quantile function

pow() — Random generation

pow() — Hazard function

pow:
pow:
pow:
pow:

pow:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Joshi, R. K., & Kumar, V. (2020). Lindley exponential power distribution with Properties and
Applications. International Journal for Research in Applied Science & Engineering Technology
(IJRASET), 8(10), 22-30. doi:10.22214/ijraset.2020.31743

Joshi, R.K., & Kumar, V. (2016). Exponentiated Power Lindley Distribution : A Bayes Study using
MCMC Approach. J. Nat. Acad. Math., 30, 80-102.


https://doi.org/10.22214/ijraset.2020.31743
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Examples

x <- seq(1.0, 5, 0.25)
dlind.exp.pow(x, 0.5, 0.2, 1.5)
plind.exp.pow(x, 0.5, 0.2, 1.5)
glind.exp.pow(@.5, 0.5, 0.2, 1.5)
rlind.exp.pow(10, 0.5, 0.2, 1.5)
hlind.exp.pow(x, 0.5, 0.2, 1.5)

# Data

x <- windshield

# ML estimates

params = list(alpha=0.97722, lambda=0.39461, theta=0.96124)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plind.exp.pow, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glind.exp.pow, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlind.exp.pow, pfun=plind.exp.pow, plot=FALSE)
print.gofic(out)

LindleyGIE Lindley Generalized Inverted Exponential(LGIE) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the LGIE dis-
tribution.

Usage

dlind.ginv.exp(x, alpha, lambda, theta, log = FALSE)
plind.ginv.exp(q, alpha, lambda, theta, lower.tail = TRUE, log.p
glind.ginv.exp(p, alpha, lambda, theta, lower.tail = TRUE, log.p
rlind.ginv.exp(n, alpha, lambda, theta)

hlind.ginv.exp(x, alpha, lambda, theta)

FALSE)
FALSE)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter

log logical; if TRUE, returns log-density
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lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The LGIE distribution is parameterized by the parameters o > 0, A > 0, and § > 0.
The LGIE distribution has CDF:

F(z;a,\0)=1— (1 767)\/96)(19 [1 — <&> In (1 e/\/r>a} ;x> 0.

where «, A, and 6 are the parameters.

The following functions are included:

e dlind.ginv.exp() — Density function

e plind.ginv.exp() — Distribution function
e glind.ginv.exp() — Quantile function

* rlind.ginv.exp() — Random generation

e hlind.ginv.exp() — Hazard function

Value

* dlind.ginv.exp: numeric vector of (log-)densities

* plind.ginv.exp: numeric vector of probabilities

e glind.ginv.exp: numeric vector of quantiles

e rlind.ginv.exp: numeric vector of random variates

* hlind.ginv.exp: numeric vector of hazard values

References

Telee, L. B. S., & Kumar, V. (2021). Lindley Generalized Inverted Exponential Distribution: Model
and Applications. Pravaha, 27(1), 61-72. doi:10.3126/pravaha.v27i1.50616

Yadav, R.S., & Kumar, V. (2020). Arctan Generalized Inverted Exponential Distribution. J. Nat.
Acad. Math., 34, 71-92.

Examples

x <- seq(5, 10, 0.2)

dlind.ginv.exp(x, 5.0, 1.5
plind.ginv.exp(x, 5.0, 1.5,
glind.ginv.exp(@0.5, 5.0, 1.5,
rlind.ginv.exp(10, 5.0, 1.5, 0.5)
hlind.ginv.exp(x, 5.0, 1.5, 0.5)

1.5, 0.
1 0


https://doi.org/10.3126/pravaha.v27i1.50616
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# Data

X <- conductors

# ML estimates

params = list(alpha=97.0105, lambda=29.9324, theta=0.9028)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = plind.ginv.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glind.ginv.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlind.ginv.exp, pfun=plind.ginv.exp, plot=FALSE)
print.gofic(out)

LindleyGompertz Lindley-Gompertz Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-
Gompertz distribution.

Usage

dlindley.gpz(x, alpha, lambda, theta, log = FALSE)

plindley.gpz(q, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
glindley.gpz(p, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rlindley.gpz(n, alpha, lambda, theta)
hlindley.gpz(x, alpha, lambda, theta)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details

The Lindley-Gompertz distribution is parameterized by the parameters o« > 0, A > 0, and 6 > 0.
The Lindley-Gompertz distribution has CDF:

oo = (1w {2 optar ) [i- 12 {1 (21 emten) ] 20

where «, A, and 6 are the parameters.

Value

e dlindley.gpz: numeric vector of (log-)densities
* plindley.gpz: numeric vector of probabilities

* glindley.gpz: numeric vector of quantiles

¢ rlindley.gpz: numeric vector of random variates

¢ hlindley.gpz: numeric vector of hazard values

References

Joshi, R. K., & Kumar, V. (2020). Lindley Gompertz distribution with properties and applica-
tion. [International Journal of Statistics and Applied Mathematics, 5(6), 28-37. doi:10.22271/
maths.2020.v5.i16a.610

Examples

x <- seq(1, 10, 0.5)
dlindley.gpz(x, 0.1, 0.5, 1.5)
plindley.gpz(x, 0.1, 0.5, 1.5)
glindley.gpz(@.5, @.1, 0.5, 1.5)
rlindley.gpz(10, 0.1, 0.5, 1.5)
hlindley.gpz(x, 0.1, 0.5, 1.5)

# Data

x <- conductors

# ML estimates

params = list(alpha=0.1765, lambda=0.2051, theta=11.4574)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.gpz, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = glindley.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.gpz, pfun=plindley.gpz, plot=FALSE)
print.gofic(out)


https://doi.org/10.22271/maths.2020.v5.i6a.610
https://doi.org/10.22271/maths.2020.v5.i6a.610
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LindleyHC Lindley Half-Cauchy(LHC) Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Lindley
Half-Cauchy distribution.

Usage
dlindley.HC(x, lambda, theta, log = FALSE)

plindley.HC(q, lambda, theta, lower.tail = TRUE, log.p = FALSE)
glindley.HC(p, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rlindley.HC(n, lambda, theta)
hlindley.HC(x, lambda, theta)
Arguments
X, q numeric vector of quantiles (x, q)
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Lindley Half-Cauchy distribution is parameterized by the parameters A > 0, and 6 > 0.
The Lindley Half-Cauchy distribution has CDF:

Fz:0,0) =1 — {1 f %m*l (i)}e {1 - (1&) In {1 - %tan* (i)} } > 0.

where\ and 6 are the parameters.

Value

e dlindley.HC: numeric vector of (log-)densities
e plindley.HC: numeric vector of probabilities

* glindley.HC: numeric vector of quantiles

e rlindley.HC: numeric vector of random variates

¢ hlindley.HC: numeric vector of hazard values
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References

Chaudhary, A.K. & Kumar, V. (2020). Lindley Half Cauchy Distribution: Properties and Ap-
plications. International Journal For Research in Applied Science & Engineering Technology
(IJRASET), 8(9), 1232-1242. doi:10.22214/ijraset.2020.31745

Examples

x <- seq(1, 10, 0.5)
dlindley.HC(x, @.5, 1.5)
plindley.HC(x, .5, 1.5)
glindley.HC(@.5, 0.5, 1.5)
rlindley.HC(10, 0.5, 1.5)
hlindley.HC(x, 0.5, 1.5)

# Data

X <- reactorpump

# ML estimates

params = list(lambda=0.5479, theta=1.2766)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.HC, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, qgfun = glindley.HC, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.HC, pfun=plindley.HC, plot=FALSE)
print.gofic(out)

LindleyInvExp Lindley Inverse Exponential Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley
Inverse Exponential distribution.

Usage

dlindley.inv.exp(x, lambda, theta, log = FALSE)
plindley.inv.exp(q, lambda, theta, lower.tail = TRUE, log.p
glindley.inv.exp(p, lambda, theta, lower.tail = TRUE, log.p
rlindley.inv.exp(n, lambda, theta)

hlindley.inv.exp(x, lambda, theta)

FALSE)
FALSE)


https://doi.org/10.22214/ijraset.2020.31745
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Arguments
X, q numeric vector of quantiles (X, q)
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Lindley Inverse Exponential distribution is parameterized by the parameters A > 0, and 6§ > 0.

The Lindley Inverse Exponential distribution has CDF:

F:0,0) =1 — (1 fe*A/x)e {1 - (1%) In (1 eW)} o> 0.

where) and 6 are the parameters.

The following functions are included:

e dlindley.inv.exp() — Density function

e plindley.inv.exp() — Distribution function
e glindley.inv.exp() — Quantile function

* rlindley.inv.exp() — Random generation

e hlindley.inv.exp() — Hazard function

Value

e dlindley.inv.exp: numeric vector of (log-)densities

* plindley.inv.exp: numeric vector of probabilities

* glindley.inv.exp: numeric vector of quantiles

e rlindley.inv.exp: numeric vector of random variates

¢ hlindley.inv.exp: numeric vector of hazard values

References

Chaudhary,A.K., & Kumar, V. (2020). Lindley Inverse Exponential Distribution With Properties
and Applications. Bulletin of Mathematics and Statistics Research (BOMSR), 8(4), 1-13.
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Examples

x <- seq(5, 10, 0.5)
dlindley.inv.exp(x, 1.5, 5.0)
plindley.inv.exp(x, 1.5, 5.0)
glindley.inv.exp(0.5, 1.5, 5.0)
rlindley.inv.exp(10, 1.5, 5.0)
hlindley.inv.exp(x, 1.5, 5.0)

# Data

x <- conductors

# ML estimates

params = list(lambda=33.8992, theta=96.0743)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.inv.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glindley.inv.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.inv.exp, pfun=plindley.inv.exp, plot=FALSE)
print.gofic(out)

LindleyInvWeibull Lindley-Inverse Weibull Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-
Inverse Weibull distribution.

Usage

dlindley.inv.weib(x, alpha, beta, theta, log = FALSE)
plindley.inv.weib(qg, alpha, beta, theta, lower.tail = TRUE, log.p
glindley.inv.weib(p, alpha, beta, theta, lower.tail = TRUE, log.p
rlindley.inv.weib(n, alpha, beta, theta)

hlindley.inv.weib(x, alpha, beta, theta)

FALSE)
FALSE)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
theta positive numeric parameter

log logical; if TRUE, returns log-density
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lower.tail

log.p

p
n

Details
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logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Lindley-Inverse Weibull distribution is parameterized by the parameters o > 0, 8 > 0, and
6> 0.

The Lindley-Inverse Weibull distribution has CDF:

F(z;0,8,0) = 1-— (1—6‘“”’5)9{1— <9i1) In (1—6_‘“&)} ;x> 0.

where «, (3, and 0 are the parameters.

The functions available are listed below:

Value

dlindley.inv.weib() — Density function

plindley.
glindley.
rlindley.
hlindley.

dlindley.
plindley.
glindley.
rlindley.
hlindley.

References

inv

inv

inv.

inv.

inv

inv

inv.
inv.

inv.

.weib() — Distribution function

.weib() — Quantile function

weib() — Random generation

weib() — Hazard function

.weib: numeric vector of (log-)densities

.weib: numeric vector of probabilities

weib: numeric vector of quantiles
weib: numeric vector of random variates

weib: numeric vector of hazard values

Joshi, R. K., & Kumar, V. (2020). Lindley inverse Weibull distribution: Theory and Applications.
Bull. Math. & Stat. Res., 8(3), 32—-46.

Examples

x <- seq(@.1, 1, 0.1)

dlindley.inv.weib(x, 1

’ ’

.5, 2.0, 0.5)
plindley.inv.weib(x, 1.5, 2.0, 0.5)
glindley.inv.weib(0.5, 2.0, 5.0, 0.1)
rlindley.inv.weib(10@, 1.5, 2.0, 0.5)
hlindley.inv.weib(x, 1.5, 2.0, 0.5)

# Data

X <=

waiting
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# ML estimates

params = list(alpha=9.3340, beta=0.3010, theta=104.4248)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.inv.weib, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
gq.plot(x, params = params, gfun = glindley.inv.weib, fit.line=FALSE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.inv.weib, pfun=plindley.inv.weib, plot=FALSE)
print.gofic(out)

LindleyRayleigh Lindley-Rayleigh Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-
Rayleigh distribution.

Usage
dlindley.rlh(x, alpha, theta, log = FALSE)
plindley.rlh(qg, alpha, theta, lower.tail = TRUE, log.p = FALSE)
glindley.rlh(p, alpha, theta, lower.tail = TRUE, log.p = FALSE)
rlindley.rlh(n, alpha, theta)
hlindley.rlh(x, alpha, theta)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details

The Lindley-Rayleigh distribution is parameterized by the parameters o > 0, and § > 0.
The Lindley-Rayleigh distribution has CDF:

F(z;0,0) = [1 - e—w‘zr {1 - (&) In (1 - e_‘“Z)} )

wherea and 6 are the parameters.

Included functions are:

e dlindley.rlh() — Density function

¢ plindley.rlh() — Distribution function
¢ glindley.rlh() — Quantile function

* rlindley.rlh() — Random generation
e hlindley.rlh() — Hazard function

Value

e dlindley.rlh: numeric vector of (log-)densities

* plindley.rlh: numeric vector of probabilities

* glindley.rlh: numeric vector of quantiles

e rlindley.rlh: numeric vector of random variates

¢ hlindley.rlh: numeric vector of hazard values

References

Joshi, R. K., & Kumar, V. (2020). New Lindley-Rayleigh Distribution with Statistical properties
and Applications. International Journal of Mathematics Trends and Technology (IJMTT), 66(9),
197-208. doi:10.14445/22315373/IIMTTV6619P523

Examples

x <- seq(@0.5, 5, 0.25)
dlindley.rlh(x, .25, 1.5)
plindley.rlh(x, ©.25, 1.5)
glindley.rlh(@.75, 0.25, 1.5)
rlindley.rlh(10, 0.25, 1.5)
hlindley.rlh(x, ©.25, 1.5)

# Data

x <- rainfall

# ML estimates

params = list(alpha=0.2170, theta=1.2107)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plindley.rlh, fit.line=TRUE)

#Q-Q (quantile—quantile) plot


https://doi.org/10.14445/22315373/IJMTT-V66I9P523
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qq.plot(x, params = params, gfun = glindley.rlh, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlindley.rlh, pfun=plindley.rlh, plot=FALSE)
print.gofic(out)

LogisChen Logistic-Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Chen distribution.

Usage
dlogis.chen(x, alpha, beta, lambda, log = FALSE)
plogis.chen(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.chen(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.chen(n, alpha, beta, lambda)
hlogis.chen(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Logistic-Chen distribution is parameterized by the parameters o > 0, § > 0, and A > 0.
The Logistic-Chen distribution has CDF:

1
1+ [exp{A(e=” —1)} —1]°

Fz;a,8,A) = 1— ;o >0.

where «, 3, and A are the parameters.

The following functions are included:
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e dlogis.chen() — Density function

¢ plogis.chen() — Distribution function
¢ glogis.chen() — Quantile function

* rlogis.chen() — Random generation

* hlogis.chen() — Hazard function

Value

* dlogis.chen: numeric vector of (log-)densities
* plogis.chen: numeric vector of probabilities

* glogis.chen: numeric vector of quantiles

¢ rlogis.chen: numeric vector of random variates

¢ hlogis.chen: numeric vector of hazard values

References

Joshi, R.K., & Kumar, V. (2021). Logistic Chen Distribution with Properties and Applications. In-
ternational Journal of Mathematics Trends and Technology (IJMTT), 67(1), 141-151. doi:10.14445/
22315373/1TIMTTV6711P519

Examples

x <- seq(0.1, 2.0, 0.1)
dlogis.chen(x, 1.5, 1.5, 0.1)
plogis.chen(x, 1.5, 1.5, 0.1)
glogis.chen(@.5, 1.5, 1.5, 0.1)
rlogis.chen(10, 2.0, 5.0, 0.1)
hlogis.chen(x, 1.5, 1.5, 0.1)

# Data

X <- bladder

# ML estimates

params = list(alpha=4.46424, beta=0.15506, lambda=0.24904)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.chen, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = glogis.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.chen, pfun=plogis.chen, plot=FALSE)
print.gofic(out)


https://doi.org/10.14445/22315373/IJMTT-V67I1P519
https://doi.org/10.14445/22315373/IJMTT-V67I1P519
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LogisExpExt

LogisExpExt

Logistic-Exponential Extension Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Exponential Extension distribution.

Usage

dlogis.exp.
plogis.exp.
glogis.exp.
rlogis.exp.
hlogis.exp.

Arguments

X, q
alpha

beta
lambda

log
lower.tail
log.p

p

n

Details

ext(x, alpha, beta, lambda, log = FALSE)

ext(q, alpha, beta, lambda, lower.tail = TRUE, log.p
ext(p, alpha, beta, lambda, lower.tail = TRUE, log.p

FALSE)
FALSE)

ext(n, alpha, beta, lambda)
ext(x, alpha, beta, lambda)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic-Exponential Extension distribution is parameterized by the parameters o > 0, 8 > 0,

and A > 0.

The Logistic-Exponential Extension distribution has CDF:

1

F(z;a,8,\) = 1-— =5 x> 0.

1+ [exp {—Aze=F/z} —1]

where «a, 3, and A are the parameters.

The implementation includes the following functions:

e dlogis

* plogis.
* glogis.
* rlogis.
* hlogis.

exp.
exp.
exp.
exp.
exp.

ext () — Density function
ext () — Distribution function
ext () — Quantile function
ext () — Random generation

ext () — Hazard function
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Value

* dlogis.exp.ext: numeric vector of (log-)densities
* plogis.exp.ext: numeric vector of probabilities

* glogis.exp.ext: numeric vector of quantiles

* rlogis.exp.ext: numeric vector of random variates

* hlogis.exp.ext: numeric vector of hazard values

References

Chaudhary,A.K., & Kumar, V.(2020). A Study on Properties and Real Data Applications of the
Logistic Exponential Extension Distribution with Properties. International Journal of Latest Trends
In Engineering and Technology (IJLTET), 18(2), 20-30.

Examples

x <- seq(0.1, 10, 0.2)
dlogis.exp.ext(x, 2.0, 5.0, 0.1)
plogis.exp.ext(x, 2.0, 5.0, 0.1)
glogis.exp.ext(0.5, 2.9, 5.0, 0.1)
rlogis.exp.ext(10, 2.0, 5.0, 0.1)
hlogis.exp.ext(x, 2.0, 5.0, 0.1)

# Data

X <- stress31

# ML estimates

params = list(alpha=1.7919, beta=418.0473, lambda=0.1211)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = plogis.exp.ext, fit.line=TRUE)

#0-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gqlogis.exp.ext, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,

dfun = dlogis.exp.ext, pfun=plogis.exp.ext, plot=TRUE)
print.gofic(res)

LogisExpPower Logistic-Exponential Power (LEP) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Exponential Power distribution.
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Usage

dlogis.exp.power(x, alpha, beta, lambda, log = FALSE)

plogis.exp.power(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.exp.power(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.exp.power(n, alpha, beta, lambda)

hlogis.exp.power(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)

Details

The Logistic-Exponential Power distribution is parameterized by the parameters o > 0, 8 > 0, and
A > 0.

The Logistic-Exponential Power distribution has CDF:

1
1 {exp (M —1) -1}

Flz;a,8,0\)= 1 =z > 0.
where «, 3, and ) are the parameters.

The implementation includes the following functions:

* dlogis.exp.power () — Density function

e plogis.exp.power() — Distribution function
* qlogis.exp.power () — Quantile function

* rlogis.exp.power () — Random generation

¢ hlogis.exp.power() — Hazard function

Value

e dlogis.exp.power: numeric vector of (log-)densities
* plogis.exp.power: numeric vector of probabilities

* glogis.exp.power: numeric vector of quantiles

e rlogis.exp.power: numeric vector of random variates

¢ hlogis.exp.power: numeric vector of hazard values
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References

Joshi, R. K., Sapkota, L.P,, & Kumar, V. (2020). The Logistic-Exponential Power Distribution
with Statistical Properties and Applications. International Journal of Emerging Technologies and
Innovative Research, 7(12), 629-641.

Examples

x <- seq(@.1, 2.0, 0.1)
dlogis.exp.power(x, 1.5,
plogis.exp.power(x, 1.5
glogis.exp.power (0.5, 1
rlogis.exp.power(10, 2.0, 5.0, 0.1)
hlogis.exp.power(x, 1.5, 1.5, 0.1)

# Data

X <- stress

# ML estimates

params = list(alpha=1.8940, beta=1.2276, lambda=0.1650)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.exp.power, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glogis.exp.power, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.exp.power, pfun=plogis.exp.power, plot=FALSE)
print.gofic(out)

LogisGompertz Logistic-Gompertz Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Gompertz distribution.

Usage
dlogis.gpz(x, alpha, beta, lambda, log = FALSE)
plogis.gpz(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.gpz(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)

rlogis.gpz(n, alpha, beta, lambda)
hlogis.gpz(x, alpha, beta, lambda)
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Arguments

X, q

alpha

beta
lambda

log
lower.tail
log.p

p

n

Details

LogisGompertz

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic-Gompertz distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.

The Logistic-Gompertz distribution has CDF:

F(ro, 8,\) = 11— 7;r>0.

where «, 3, and \ are the parameters.

The implementation includes the following functions:

e dlogis.
e plogis.
e glogis.
* rlogis.

* hlogis.

Value
e dlogis.
* plogis.
e glogis.
* rlogis.

* hlogis.

References

gpz() — Density function

gpz () — Distribution function

gpz () — Quantile function

gpz () — Random generation

gpz () — Hazard function

gpz:
gpz:
gpz:
gpz:
gpz:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Joshi, R. K., & Kumar, V. (2020). The Logistic Gompertz Distribution with Properties and Appli-
cations. Bull. Math. & Stat. Res., 8(4), 81-94.
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Examples
x <- seq(0.1, 2.0, 0.2)
dlogis.gpz(x, 2.0, 1.5, 0.1)
plogis.gpz(x, 2.0, 1.5, 0.1)
glogis.gpz(0.5, 2.0, 1.5, 0.1)

rlogis.gpz(10, 2.0, 1.5, 0.1)
hlogis.gpz(x, 2.0, 1.5, 0.1)

# Data

X <- stress

# ML estimates

params = list(alpha=2.09377, beta=0.30392, lambda=0.17763)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.gpz, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = glogis.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.gpz, pfun=plogis.gpz, plot=TRUE)
print.gofic(out)

LogisInvExp Logistic Inverse Exponential Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Logistic
Inverse Exponential distribution.

Usage
dlogis.inv.exp(x, alpha, lambda, log = FALSE)

plogis.inv.exp(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.inv.exp(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.inv.exp(n, alpha, lambda)
hlogis.inv.exp(x, alpha, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

log.p logical; if TRUE, probabilities are given as log(p)
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Details

LogisInvExp

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic Inverse Exponential distribution is parameterized by the parameters o > 0 and A > 0.

The Logistic Inverse Exponential distribution has CDF:

1
1+ [exp{\/z} — 1]’

F(z;a,)) = x> 0.

where o and A are the parameters.

Available functions are:

Value

dlogis.
plogis.
glogis.
rlogis.

hlogis.

dlogis.
plogis.
glogis.
rlogis.

hlogis.

References

inv.
inv.
inv.
inv.

inv.

inv.
inv.
inv.
inv.

inv.

exp() — Density function
exp () — Distribution function
exp() — Quantile function
exp() — Random generation

exp() — Hazard function

exp: numeric vector of (log-)densities
exp: numeric vector of probabilities
exp: numeric vector of quantiles

exp: numeric vector of random variates

exp: numeric vector of hazard values

Chaudhary, A.K., & Kumar, V. (2020). Logistic Inverse Exponential Distribution with Properties
and Applications. International Journal of Mathematics Trends and Technology, 66(10), 151-162.
doi:10.14445/22315373/IIMTTV66110P518

Examples

x <- seq(0.

1, 10, 0.5)

dlogis.inv.exp(x, 2.5, 1.5)
plogis.inv.exp(x, 2.5, 1.5)
glogis.inv.exp(@.5, 2.5, 1.5)
rlogis.inv.exp(10, 2.5, 1.5)
hlogis.inv.exp(x, 2.5, 1.5)

# Data

X <- stress31

# ML estimates
params = list(alpha=7.6230, lambda=91.7136)
#P-P (probability-probability) plot


https://doi.org/10.14445/22315373/IJMTT-V66I10P518

LogisInvLomax

pp.plot(x, params

#Q-Q (quantile-qu
qq.plot(x, params

# Goodness-of-Fit

out <- gofic(x, p
dfun

print.gofic(out)
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= params, pfun = plogis.inv.exp, fit.line=TRUE)

antile) plot
= params, gfun = glogis.inv.exp, fit.line=TRUE)

(GoF) and Model Diagnostics
arams = params,
= dlogis.inv.exp, pfun=plogis.inv.exp, plot=FALSE)

LogisInvLomax

Logistic Inverted Lomax Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic
Inverted Lomax distribution.

Usage

dlogis.inv.lomax(x, alpha, beta, lambda, log = FALSE)

plogis.inv.lomax(q, alpha, beta, lambda, lower.tail = TRUE, log.p
glogis.inv.lomax(p, alpha, beta, lambda, lower.tail = TRUE, log.p

FALSE)
FALSE)

rlogis.inv.lomax(n, alpha, beta, lambda)
hlogis.inv.lomax(x, alpha, beta, lambda)

Arguments

X, q

alpha

beta
lambda

log
lower.tail
log.p

p

n

Details

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic Inverted Lomax distribution is parameterized by the parameters o > 0, 5 > 0, and

A>0.

The Logistic Inverted Lomax distribution has CDF:
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F(IE;OL,B,)\): 1-

where a, 3, and A are the parameters.

The following functions are included:

* dlogis.inv.lomax() — Density function

e plogis.inv.lomax () — Distribution function
¢ gqlogis.inv.lomax() — Quantile function

* rlogis.inv.lomax() — Random generation

¢ hlogis.inv.lomax() — Hazard function

Value

* dlogis.inv.lomax: numeric vector of (log-)densities

* plogis.inv.lomax: numeric vector of probabilities

* glogis.inv.lomax: numeric vector of quantiles

¢ rlogis.inv.lomax: numeric vector of random variates

¢ hlogis.inv.lomax: numeric vector of hazard values

References

Joshi, R. K., & Kumar, V. (2021). The Logistic Inverse Lomax Distribution with Properties and
Applications. International Journal of Mathematics and Computer Research, 9(1), 2169-2177.
doi:10.47191/ijmer/v9i1.02

Lan, Y., & Leemis, L. M. (2008). The Logistic-Exponential Survival Distribution. Naval Research
Logistics, 55, 252-264.

Examples

x <- seq(@.1, 10, 0.2)
dlogis.inv.lomax(x, 2.0, 5.0, 0.2)
plogis.inv.lomax(x, 2.0, 5.0, 0.2)
glogis.inv.lomax(@0.5, 2.0, 5.9, 0.2)
rlogis.inv.lomax(10, 2.0, 5.0, 0.2)
hlogis.inv.lomax(x, 2.0, 5.0, 0.2)

# Data

X <- bladder

# ML estimates

params = list(alpha=2.87951, beta=38.51405, lambda=0.35313)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.inv.lomax, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = qlogis.inv.lomax, fit.line=TRUE)


https://doi.org/10.47191/ijmcr/v9i1.02
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# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.inv.lomax, pfun=plogis.inv.lomax, plot=FALSE)
print.gofic(out)

LogisInvWeibull Logistic Inverse Weibull Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic
Inverse Weibull distribution.

Usage
dlogis.inv.weib(x, alpha, beta, lambda, log = FALSE)
plogis.inv.weib(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.inv.weib(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.inv.weib(n, alpha, beta, lambda)
hlogis.inv.weib(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Logistic Inverse Weibull distribution is parameterized by the parameters o > 0, § > 0, and
A > 0.

The Logistic Inverse Weibull distribution has CDF:

1
1+ (a7 —1)

F(Z;O&,ﬂ,)\): = ;x> 0.

where «, (3, and A are the parameters.

The following functions are included:
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e dlogis.inv.weib() — Density function

¢ plogis.inv.weib() — Distribution function
¢ glogis.inv.weib() — Quantile function

* rlogis.inv.weib() — Random generation

* hlogis.inv.weib() — Hazard function

Value

e dlogis.inv.weib: numeric vector of (log-)densities

* plogis.inv.weib: numeric vector of probabilities

* glogis.inv.weib: numeric vector of quantiles

¢ rlogis.inv.weib: numeric vector of random variates

e hlogis.inv.weib: numeric vector of hazard values

References

Chaudhary,A.K., & Kumar, V.(2020). A Study on Properties and Goodness-of-Fit of The Lo-
gistic Inverse Weibull Distribution. Global Journal of Pure and Applied Mathematics(GJPAM),
16(6),871-889. doi:10.37622/GJPAM/16.6.2020.871889

Examples

x <- seq(0.1, 2.0, 0.2)

dlogis.inv.weib(x, 2.5, 1.5, 0.1)
plogis.inv.weib(x, 2.5, 1.5, 0.1)
glogis.inv.weib(@.5, 2.5, 1.5, 0.1)

rlogis.inv.weib(10, 2.5, 1.5, 0.1)
hlogis.inv.weib(x, 2.5, 1.5, @.1)

# Data

X <- stress31

# ML estimates

params = list(alpha=22.20247, beta=0.34507, lambda=3.74216)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.inv.weib, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glogis.inv.weib, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.inv.weib, pfun=plogis.inv.weib, plot=FALSE)
print.gofic(out)


https://doi.org/10.37622/GJPAM/16.6.2020.871-889
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LogislLomax Logistic-Lomax Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Lomax distribution.

Usage

dlogis.lomax(x, alpha, beta, lambda, log = FALSE)

plogis.lomax(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.lomax(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.lomax(n, alpha, beta, lambda)

hlogis.lomax(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)

Details

The Logistic-Lomax distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Logistic-Lomax distribution has CDF:
1
F(z;a,8,\) = 1-— X = ;x=0.
1+<(1+ﬁx) —1)

where a, 3, and A are the parameters.

The following functions are included:

* dlogis.lomax() — Density function

e plogis.lomax() — Distribution function
¢ glogis.lomax() — Quantile function

* rlogis.lomax() — Random generation

¢ hlogis.lomax() — Hazard function



80

Value

* dlogis.lomax: numeric vector of (log-)densities
* plogis.lomax: numeric vector of probabilities

* glogis.lomax: numeric vector of quantiles

* rlogis.lomax: numeric vector of random variates

¢ hlogis.lomax: numeric vector of hazard values

References

LogisModExp

Chaudhary, A.K., & Kumar, V.(2020). The Logistic Lomax Distribution with Properties and Ap-
plications. International Journal of New Technology and Research, 6(12), 74-80. doi:10.31871/

IINTR.6.12.21

Shrestha, S.K., & Kumar, V. (2014). Bayesian Analysis of Extended Lomax Distribution. Inter-
national Journal of Mathematical Trends and Technology (IJMTT), 7(1), 33—41. doi:10.14445/

22315373/1IMTTV7P505
Examples

x <- seq(0.1, 10, 0.2)

dlogis.lomax(x, 1.5, 0.1, 2.0)

plogis.lomax(x, 1.5, 0.1, 2.0)

glogis.lomax(@.5, 1.5, 0.1, 2.0)

rlogis.lomax(1@, 1.5, 0.1, 2.0)
hlogis.lomax(x, 1.5, 0.1, 2.0)

# Data

X <- bladder

# ML estimates

params = list(alpha=1.38027, beta=0.04451, lambda=2.80412)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.lomax, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glogis.lomax, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.lomax, pfun=plogis.lomax, plot=FALSE)
print.gofic(out)

LogisModExp Logistic Modified Exponential Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic

Modified Exponential distribution.


https://doi.org/10.31871/IJNTR.6.12.21
https://doi.org/10.31871/IJNTR.6.12.21
https://doi.org/10.14445/22315373/IJMTT-V7P505
https://doi.org/10.14445/22315373/IJMTT-V7P505
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Usage

dlogis.mod.exp(x, alpha, beta, lambda, log = FALSE)

plogis.mod.exp(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.mod.exp(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.mod.exp(n, alpha, beta, lambda)

hlogis.mod.exp(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)

Details

The Logistic Modified Exponential distribution is parameterized by the parameters « > 0, 8 > 0,
and A > 0.

The Logistic Modified Exponential distribution has CDF:
1

F e a)\ = 1- a s ZO
(x5, B, \) 1+ [exp {\zeBr} — 1] v

where «, 3, and \ are the parameters.

The following functions are included:

* dlogis.mod.exp() — Density function

¢ plogis.mod.exp() — Distribution function
¢ glogis.mod.exp() — Quantile function

* rlogis.mod.exp() — Random generation

* hlogis.mod.exp() — Hazard function

Value

* dlogis.mod.exp: numeric vector of (log-)densities

* plogis.mod.exp: numeric vector of probabilities

* glogis.mod.exp: numeric vector of quantiles

¢ rlogis.mod.exp: numeric vector of random variates

¢ hlogis.mod.exp: numeric vector of hazard values
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References

LogisNHE

Chaudhary, A.K., & Kumar, V.(2020). A Study on Properties and Applications of Logistic Modified
Exponential Distribution. International Journal of Latest Trends In Engineering and Technology
(IJLTET),18(1),19-29.

Examples

x <- seq(0.
mod.
mod.
mod.
mod.
mod.

dlogis.
plogis.
glogis.
rlogis.
hlogis.

# Data

X <- stress

1, 2.0, 0.2)
exp(x, 1.5, 1.5
exp(x, 1.5, 1.5,
exp(@0.5, 1.5, 1.5,
exp(10, 1.5, 1.5, 0.2
exp(x, 1.5, 1.5, 0.2)

# ML estimates
params = list(alpha=2.0354, beta=0.1891, lambda=0.1656)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.mod.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot

gq.plot(x, params = params, gfun = glogis.mod.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.mod.exp, pfun=plogis.mod.exp, plot=TRUE)
print.gofic(out)

LogisNHE

Logistic-NHE Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
NHE distribution.

Usage

dlogis
plogis
glogis
rlogis
hlogis

.NHE(x, alpha, beta, lambda, log = FALSE)

.NHE(q, alpha, beta, lambda, lower.tail = TRUE, log.p
.NHE(p, alpha, beta, lambda, lower.tail = TRUE, log.p

.NHE(n, alpha, beta, lambda)
.NHE(x, alpha, beta, lambda)

FALSE)
FALSE)
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Arguments

X’q

alpha

beta

lambda

log

lower.tail

log.p

p

n

Details
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numeric vector of quantiles (X, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic-NHE distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Logistic-NHE distribution has CDF:

1

F(I;OL,ﬂ,A): 1- x> 0.

1+ fexp{(1+Aa)f — 1} —1]° " =

where «, 3, and \ are the parameters.

Included functions are:

Value

dlogis.
plogis.
glogis.
rlogis.

hlogis.

dlogis.
plogis.
glogis.
rlogis.

hlogis.

References

NHE () — Density function

NHE () — Distribution function

NHE () — Quantile function

NHE () — Random generation

NHE () — Hazard function

NHE:
NHE:
NHE:
NHE:
NHE:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Chaudhary,A K., & Kumar, V.(2020). The Logistic NHE Distribution with Properties and Applica-
tions. International Journal for Research in Applied Science & Engineering Technology (IJRASET),
8(12),591-603. doi:10.22214/ijraset.2020.32565


https://doi.org/10.22214/ijraset.2020.32565
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Examples

x <- seq(0.1, 2.0, 0.2
dlogis.NHE(x, 2.0, 5.0
plogis.NHE(x, 2.0, 5.0
glogis.NHE(@.5, 2.9, 5.0, 0.1)
rlogis.NHE(10, 2.0, 5.0, 0.1)
hlogis.NHE(x, 2.0, 5.0, 0.1)

# Data

x <- conductors

# ML estimates

params = list(alpha=4.39078, beta=6.98955, lambda=0.01133)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = plogis.NHE, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, qfun = glogis.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.NHE, pfun=plogis.NHE, plot=TRUE)
print.gofic(out)

LogisRayleigh Logistic-Rayleigh Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
Rayleigh distribution.

Usage

dlogis.rayleigh(x, alpha, lambda, log = FALSE)
plogis.rayleigh(q, alpha, lambda, lower.tail = TRUE, log.p
glogis.rayleigh(p, alpha, lambda, lower.tail = TRUE, log.p
rlogis.rayleigh(n, alpha, lambda)

hlogis.rayleigh(x, alpha, lambda)

FALSE)
FALSE)

Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].



LogisRayleigh

log.p
p
n

Details
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logical; if TRUE, probabilities are given as log(p)
numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Logistic-Rayleigh distribution is parameterized by the parameters o > 0 and A > 0.
The Logistic-Rayleigh distribution has CDF:

1
F(z;a,\) =1- ;x>0
(50 %) 14 (eQa?/2 —1)*7 v

where o and ) are the parameters.

The following functions are included:

e dlogis.
* plogis.
* glogis.
* rlogis.

* hlogis.

Value

e dlogis.
* plogis.
* glogis.
* rlogis.

* hlogis.

References

rayleigh() — Density function
rayleigh() — Distribution function
rayleigh() — Quantile function
rayleigh() — Random generation

rayleigh() — Hazard function

rayleigh: numeric vector of (log-)densities
rayleigh: numeric vector of probabilities
rayleigh: numeric vector of quantiles
rayleigh: numeric vector of random variates

rayleigh: numeric vector of hazard values

Chaudhary, A.K., & Kumar, V. (2020). The Logistic - Rayleigh Distribution with Properties and Ap-
plications. International Journal of Statistics and Applied Mathematics, 5(6), 12—19. doi:10.22271/
maths.2020.v5.16a.603

Examples

x <- seq(@0.1, 2.0, 0.2)
dlogis.rayleigh(x, 2.0, 5.0)
plogis.rayleigh(x, 2.0, 5.0)
glogis.rayleigh(0.5, 2.0, 5.0)
rlogis.rayleigh(10, 2.0, 5.0)
hlogis.rayleigh(x, 2.0, 5.0)

# Data

X <- conductors
# ML estimates


https://doi.org/10.22271/maths.2020.v5.i6a.603
https://doi.org/10.22271/maths.2020.v5.i6a.603
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params = list(alpha=2.6967, lambda=0.0291)
#P—P (probability—-probability) plot
pp.plot(x, params = params, pfun = plogis.rayleigh, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glogis.rayleigh, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.rayleigh, pfun=plogis.rayleigh, plot=FALSE)
print.gofic(out)

LogisWeib Logistic-Weibull Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Logistic-
‘Weibull distribution.

Usage

dlogis.weib(x, alpha, beta, lambda, log = FALSE)

plogis.weib(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
glogis.weib(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.weib(n, alpha, beta, lambda)
hlogis.weib(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details

The Logistic-Weibull distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Logistic-Weibull distribution has CDF:
1

F y O 7A = 1- o ; 20
(z3 00, B,A) T+ e0a?) = 1) T

where «, 3, and \ are the parameters.

Included functions are:

* dlogis.weib() — Density function

e plogis.weib() — Distribution function
* gqlogis.weib() — Quantile function

* rlogis.weib() — Random generation

* hlogis.weib() — Hazard function

Value

* dlogis.weib: numeric vector of (log-)densities

* plogis.weib: numeric vector of probabilities

* gqlogis.weib: numeric vector of quantiles

* rlogis.weib: numeric vector of random variates

* hlogis.weib: numeric vector of hazard values

References

Chaudhary,A K., & Kumar, V.(2021). The Logistic-Weibull distribution with Properties and Appli-
cations. IOSR Journal of Mathematics (IOSR-JM), 17(1),Ser.1, 32-41.

Dhungana, G.P., & Kumar, V.(2021). Modified Half Logistic Weibull Distribution with Statistical
Properties and Applications. International Journal of Statistics and Reliability Engineering, 8(1),
29-39.

Examples

x <- seq(0.1, 10, 0.2)
dlogis.weib(x, 2.0, 0.5, 0.2)
plogis.weib(x, 2.0, 0.5, 0.2)
glogis.weib(@.5, 2.0, 0.5, 0.2)
rlogis.weib(10, 2.0, 0.5, 0.2)
hlogis.weib(x, 2.0, 0.5, 0.2)

# Data

x <- bladder

# ML estimates

params = list(alpha=2.4165, beta=0.5103, lambda=0.2711)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = plogis.weib, fit.line=TRUE)
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#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = glogis.weib, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dlogis.weib, pfun=plogis.weib, plot=FALSE)
print.gofic(out)

ModAtanExp Modified Atan Exponential Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Modified
Atan Exponential distribution.

Usage
dmod.atan.exp(x, alpha, beta, lambda, log = FALSE)
pmod.atan.exp(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gmod.atan.exp(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rmod.atan.exp(n, alpha, beta, lambda)
hmod.atan.exp(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Modified Atan Exponential distribution is parameterized by the parameters o > 0, 5 > 0, and
A>0.

The Modified Atan Exponential distribution has CDF:

A
2
F(x;a,B,)\) = | —arctan {fze**}| ;2 > 0.
T
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where «, 3, and \ are the parameters.

The following functions are included:

* dmod.atan.exp() — Density function

e pmod.atan.exp() — Distribution function
e gmod.atan.exp() — Quantile function

* rmod. atan.exp() — Random generation

* hmod.atan.exp() — Hazard function

Value

* dmod.atan.exp: numeric vector of (log-)densities
* pmod. atan.exp: numeric vector of probabilities

* gmod. atan.exp: numeric vector of quantiles

* rmod.atan.exp: numeric vector of random variates

* hmod.atan.exp: numeric vector of hazard values

References

Chaudhary, A.K., Telee, L.B.S., & Kumar, V.(2023). Modified Arctan Exponential Distribution
with application to COVID-19 Second Wave data in Nepal. Journal of Econometrics and Statistics,
4(1), 63-78.

Examples

x <- seq(0.1, 10, 0.2)
dmod.atan.exp(x, 0.1, 0.2, 1.2)
pmod.atan.exp(x, 0.1, 0.2, 1.2)
gmod.atan.exp(@0.5, 0.1, 0.2, 1.2)
rmod.atan.exp(10, 0.1, 0.2, 1.2)
hmod.atan.exp(x, 0.1, 0.2, 1.2)

# Data

x <- bladder

# ML estimates

params = list(alpha=0.04599, beta=0.14935, lambda=1.23266)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pmod.atan.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gmod.atan.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.atan.exp, pfun=pmod.atan.exp, plot=FALSE)
print.gofic(out)
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ModGE Modified Generalized Exponential (MGE) Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Modified
Generalized Exponential distribution.

Usage
dmod.gen.exp(x, alpha, beta, lambda, log = FALSE)

pmod.gen.exp(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gmod.gen.exp(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rmod.gen.exp(n, alpha, beta, lambda)
hmod.gen.exp(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Modified Generalized Exponential distribution is parameterized by the parameters o > 0,
S >0,and A > 0.

The Modified Generalized Exponential distribution has CDF:

Flw;a,8,)) = [1—exp {1 — (exp(B2))*}]*, x> 0.

where «, 3, and A are the parameters.

The following functions are included:

e dmod.gen.exp() — Density function

e pmod.gen.exp() — Distribution function
e gmod.gen.exp() — Quantile function

* rmod.gen.exp() — Random generation

¢ hmod.gen.exp() — Hazard function



ModInvGE

Value
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* dmod.gen.exp: numeric vector of (log-)densities

* pmod.gen.exp: numeric vector of probabilities

* gmod.gen.exp: numeric vector of quantiles

* rmod.gen.exp: numeric vector of random variates

* hmod.gen.exp: numeric vector of hazard values

References

Telee, L. B. S., & Kumar, V. (2023). Modified Generalized Exponential Distribution. Nepal Journal
ofMathematical Sciences, 4(1), 21-32. doi:10.3126/njmathsci.v4i1.53154

Chaudhary, A. K., Sapkota, L. P., & Kumar, V.(2021). Some Properties and Application of Arctan
Generalized Exponential Distribution. International Journal of Innovative Research in Science,
Engineering and Technology (IJIRSET), 10(1),456—468.

Examples

x <- seq(@.1, 2.0, 0.2)
dmod.gen. 0 0.2)
.exp(x, 2.0, 0.5, 0.2)

pmod. gen

gmod. gen.
rmod. gen.
hmod. gen.

# Data

exp(x, 2.0, 0.5,
exp(0.5, 2.0, 0.5, 0.2)
exp(10, 2.0, 0.5, 0.2)
exp(x, 2.0, 0.5, 0.2)

X <- stress
# ML estimates

params =

list(alpha=3.1502, beta=0.2167, lambda=0.3636)

#P-P (probability-probability) plot
pp.plot(x, params = params, pfun = pmod.gen.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gmod.gen.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.gen.exp, pfun=pmod.gen.exp, plot=FALSE)

print.gofic(out)

ModInvGE

Modified Inverse Generalized Exponential(MIGE) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the MIGE
distribution.
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Usage

dmod.
pmod.
gmod.
rmod.
hmod.

Arguments

X?q
alpha

beta

lambda

log

inv.gen
inv.gen
inv.gen
inv.gen
inv.gen

lower.tail

log.p

p
n

Details

ModInvGE
.exp(x, alpha, beta, lambda, log = FALSE)
.exp(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
.exp(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
.exp(n, alpha, beta, lambda)
.exp(x, alpha, beta, lambda)

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The MIGE distribution is parameterized by the parameters o > 0, 5 > 0, and A > 0.
The Modified Inverse Generalized Exponential( MIGE) distribution has CDF:

F(z;a,8,\) = 1-— [1 — exp (—)\x_le_m)]a ;x> 0.

where «, 3, and A are the parameters.

The following functions are included:

Value

dmod.
pmod.
gmod.
rmod.

hmod.

dmod.
pmod.
gmod.
rmod.
hmod.

inv

inv.
inv.
inv.

inv.

inv.
inv.
inv.
inv.

inv.

.gen.exp() — Density function

gen
gen
gen

gen

gen.
gen.
gen.
gen.

gen.

exp:
exp:
exp:
exp:

exp:

.exp() — Distribution function
.exp() — Quantile function
.exp() — Random generation

.exp() — Hazard function

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values



ModInvLomax 93

References

Krishna, H., & Kumar, K. (2013). Reliability estimation in generalized inverted exponential distri-
bution with progressive type Il censored sample. Journal of Statistical Computation and Simulation,
83(6), 1007-1019.

Telee, L. B. S., & Kumar, V. (2023). Modified Inverse Generalized Exponential Distribution :
Model and Properties. Int. J. Res. Granthaalayah, 11(8), 96—111. doi:10.29121/granthaalayah.v11.i18.2023.5288

Examples

x <- seq(0.1, 10, 0.2)
dmod.inv.gen.exp(x, 2.0, 0.5, 0.2)
pmod.inv.gen.exp(x, 2.0, 0.5, 0.2)
gmod.inv.gen.exp(0.5, 2.0, 0.5, 0.2)
rmod.inv.gen.exp(10, 2.0, 0.5, 0.2)
hmod.inv.gen.exp(x, 2.0, 0.5, 0.2)

# Data

x <- fibers69

# ML estimates

params = list(alpha=30.7790, beta=0.1942, lambda=14.8297)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = pmod.inv.gen.exp, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gmod.inv.gen.exp, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.inv.gen.exp, pfun=pmod.inv.gen.exp, plot=TRUE)
print.gofic(out)

ModInvLomax Modified Inverse Lomax (MIL) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Modified
Inverse Lomax distribution.

Usage

dmod.inv.lomax(x, alpha, beta, lambda, log = FALSE)
pmod.inv.lomax(q, alpha, beta, lambda, lower.tail = TRUE, log.p
gmod.inv.lomax(p, alpha, beta, lambda, lower.tail = TRUE, log.p
rmod. inv.lomax(n, alpha, beta, lambda)

hmod. inv.lomax(x, alpha, beta, lambda)

FALSE)
FALSE)
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Arguments
X numeric vector of strictly positive quantiles.
alpha positive shape parameter.
beta positive scale parameter.
lambda positive shape/scale parameter.
log logical; if TRUE, returns the log-density.
q numeric vector of strictly positive quantiles.
lower. tail logical; if TRUE (default), probabilities are P(X < z), otherwise P(X > ).
log.p logical; if TRUE, probabilities are returned as log(p).
p numeric vector of probabilities with values in (0, 1).
n number of observations (positive integer).
Details

The distribution is parameterized by shape parameters « > 0, 8 > 0 and scale/shape parameter
A> 0.

The cumulative distribution function (CDF) of the MIL distribution is

F(z;a,8,\) = [1—1— (i) e_’\”} _a7 x> 0.

Value

* dmod.inv.lomax: numeric vector of (log) densities.

¢ pmod.inv.lomax: numeric vector of distribution function values.
* gmod. inv.lomax: numeric vector of quantiles.

¢ rmod.inv.lomax: numeric vector of random variates.

* hmod. inv.lomax: numeric vector of hazard rates.

References
Telee, L.B.S., Yadav, R.S., & Kumar V.(2023). Modified Inverse Lomax Distribution: Model and
properties. Discovery, 59: e110d1352. doi:10.54905/disssi.v59i333.e110d1352

Examples

X <- seq(@.1, 5, by = 0.1)

dmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)
pmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)
gmod.inv.lomax(@.5, alpha = 1.5, beta = 2, lambda = 0.5)
set.seed(123)

rmod.inv.lomax(5, alpha = 1.5, beta = 2, lambda = 0.5)
hmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)

# Data
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X <- windshield

# ML estimates

params = list(alpha=0.6661, beta=26.8875, lambda=1.0004)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pmod.inv.lomax, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = gmod.inv.lomax, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.inv.lomax, pfun=pmod.inv.lomax, plot=FALSE)
print.gofic(out)

ModInvNHE Modified Inverse NHE Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Modified
Inverse NHE distribution.

Usage
dmod.inv.NHE(x, alpha, beta, lambda, log = FALSE)
pmod.inv.NHE(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gmod.inv.NHE(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rmod.inv.NHE(n, alpha, beta, lambda)
hmod.inv.NHE(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details
The Modified Inverse NHE distribution is parameterized by the parameters o« > 0, 5 > 0, and
A > 0.
The Modified Inverse NHE distribution has CDF:

F(z;a,8,A) = exp{l—(l-ﬁ-)\e_ﬂx) } ;x> 0.
X

where «, 3, and \ are the parameters.

The following functions are included:

e dmod.inv.NHE() — Density function

e pmod.inv.NHE() — Distribution function
e gmod.inv.NHE() — Quantile function

e rmod.inv.NHE() — Random generation

e hmod.inv.NHE() — Hazard function

Value

e dmod. inv.NHE: numeric vector of (log-)densities
* pmod. inv.NHE: numeric vector of probabilities

* gmod. inv.NHE: numeric vector of quantiles

* rmod. inv.NHE: numeric vector of random variates

e hmod. inv.NHE: numeric vector of hazard values

References

Chaudhary, A. K., Sapkota, L. P., & Kumar, V. (2022). Modified Inverse NHE Distribution: Proper-
ties and Application. Journal of Institute of Science and Technology, 27(1), 125—133. doi:10.3126/
jist.v27i1.46695

Examples

x <- seq(@0.1, 10, 0.2)
dmod.inv.NHE(x, 2.0, 0.5, 0.2)
pmod.inv.NHE(x, 2.0, 0.5, 0.2)
gmod.inv.NHE(@.5, 2.0, 0.5, 0.2)
rmod.inv.NHE(10, 2.0, 0.5, 0.2)
hmod.inv.NHE(x, 2.0, 0.5, 0.2)

’

# Data

x <- waiting

# ML estimates

params = list(alpha=0.4858, beta=0.1099, lambda=37.5129)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pmod.inv.NHE, fit.line=TRUE)


https://doi.org/10.3126/jist.v27i1.46695
https://doi.org/10.3126/jist.v27i1.46695
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#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gmod.inv.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.inv.NHE, pfun=pmod.inv.NHE, plot=FALSE)
print.gofic(out)

ModUbd Modified UBD (MUBD) Distribution

Description

Density, distribution function, quantile function, random generation, and hazard rate function for
the Modified UBD (MUBD) distribution.

Usage
dmod.ubd(x, alpha, beta, lambda, log = FALSE)
pmod.ubd(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gmod.ubd(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rmod.ubd(n, alpha, beta, lambda)
hmod.ubd(x, alpha, beta, lambda)
Arguments
X Vector of positive quantiles.
alpha Shape parameter (o > 0).
beta Shape parameter (3 > 0).
lambda Scale parameter (A > 0).
log Logical; if TRUE, returns the log-density.
q Vector of positive quantiles.
lower. tail Logical; if TRUE (default), returns P(X < z).
log.p Logical; if TRUE, probabilities are returned on the log scale.
p Vector of probabilities.
n Number of random observations. Must be a positive integer.
Details

The Modified UBD (MUBD) distribution is a flexible lifetime distribution with positive shape pa-
rameters « > 0, 8 > 0 and scale parameter A > 0.

The MUDB distribution has CDF:

F(z;a,8,)\) = l—exp{l— (1+x567>‘/*’”)a} ;x> 0.

where «, (3, and A are the parameters.
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Value

dmod. ubd returns the probability density function. pmod.ubd returns the cumulative distribution
function. gmod. ubd returns the quantile function. rmod.ubd generates random variates. hmod. ubd
returns the hazard rate function.

References

Chaudhary, A.K., Telee, L. B. S., & Kumar, V. (2023). Modified Upside Down Bathtub-Shaped
Hazard Function Distribution: Properties and Applications. Journal of Econometrics and Statistics,
3(1), 107-120.

Examples

x <- seq(@.1, 1, by=0.1)

dmod.ubd(x, alpha = 1.5, beta = 1.2, lambda = 2)
pmod.ubd(x, alpha = 1.5, beta = 1.2, lambda = 2)
gmod.ubd(@.5, alpha = 1.5, beta = 1.2, lambda = 2)
rmod.ubd(10, alpha = 1.5, beta = 1.2, lambda = 2)
hmod.ubd(x, alpha = 1.5, beta = 1.2, lambda = 2)

# Data

x <- fibers69

# ML estimates

params = list(alpha=0.8559, beta=3.0133, lambda=7.0336)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pmod.ubd, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gmod.ubd, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dmod.ubd, pfun=pmod.ubd, plot=TRUE)
print.gofic(out)

NewLindleyHC New Lindley Half-Cauchy Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the New Lind-
ley Half-Cauchy distribution.

Usage

dNLindley.HC(x, lambda, theta, log = FALSE)
pNLindley.HC(q, lambda, theta, lower.tail = TRUE, log.p
gNLindley.HC(p, lambda, theta, lower.tail = TRUE, log.p

FALSE)
FALSE)
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rNLindley.HC(n, lambda, theta)
hNLindley.HC(x, lambda, theta)

Arguments
X, q numeric vector of quantiles (x, q)
lambda positive numeric parameter
theta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The New Lindley Half-Cauchy distribution is parameterized by the parameters A > 0, and 6 > 0.
The New Lindley Half-Cauchy distribution has CDF:

F(x:\,0) = {itan_l (i)}e {1 - (&) In [i fan~"! (i)]} x> 0.

where) and 6 are the parameters.

The following functions are included:

* dNLindley.HC() — Density function

¢ pNLindley.HC() — Distribution function
e gNLindley.HC() — Quantile function

* rNLindley.HC() — Random generation
e hNLindley.HC() — Hazard function

Value

* dNLindley.HC: numeric vector of (log-)densities

* pNLindley.HC: numeric vector of probabilities

* gNLindley.HC: numeric vector of quantiles

¢ rNLindley.HC: numeric vector of random variates

e hNLindley.HC: numeric vector of hazard values

References

Chaudhary, A.K. & Kumar, V. (2020). New Lindley Half Cauchy Distribution: Theory and Applica-
tions. International Journal of Recent Technology and Engineering (IJRTE), 9(4), 1-7. doi:10.35940/
ijrte.D4734.119420


https://doi.org/10.35940/ijrte.D4734.119420
https://doi.org/10.35940/ijrte.D4734.119420
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Examples

x <- seq(1, 10, 0.5)
dNLindley.HC(x, 0.5, 1.5)
pNLindley.HC(x, 0.5, 1.5)
oNLindley.HC(0.5, 0.5, 1.5)
rNLindley.HC(10, 0.5, 1.5)
hNLindley.HC(x, 0.5, 1.5)

# Data

X <- reactorpump

# ML estimates

params = list(lambda=0.7743, theta=1.3829)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = pNLindley.HC, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = gNLindley.HC, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dNLindley.HC, pfun=pNLindley.HC, plot=TRUE)
print.gofic(out)

Perks Perks Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Perks dis-

tribution.

Usage
dperks(x, alpha, beta, log = FALSE)
pperks(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
gperks(p, alpha, beta, lower.tail = TRUE, log.p = FALSE)
rperks(n, alpha, beta)
hperks(x, alpha, beta)
dperks(x, alpha, beta, log = FALSE)
pperks(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
gperks(p, alpha, beta, lower.tail = TRUE, log.p = FALSE)

rperks(n, alpha, beta)

hperks(x, alpha, beta)



Perks 101

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Perks distribution is parameterized by the parameters o« > 0 and 3 > 0.
The Perks distribution has CDF:

1+«

where « and 3 are the parameters.

The following functions are included:

* dperks() — Density function

¢ pperks() — Distribution function
e gperks() — Quantile function

* rperks() — Random generation

e hperks() — Hazard function

Value

* dperks: numeric vector of (log-)densities

* pperks: numeric vector of probabilities

* gperks: numeric vector of quantiles

¢ rperks: numeric vector of random variates

¢ hperks: numeric vector of hazard values

References

Richards, S.J. (2008). Applying survival models to pensioner mortality data. Bra. Actuarial Jour-
nal, 14, 257-303.

Chaudhary, A.K., & Kumar, V. (2013). A Bayesian Analysis of Perks Distribution via Markov
Chain Monte Carlo Simulation. Nepal Journal of Science and Technology, 14(1), 153—-166. doi:10.3126/
njst.v14i1.8936

Richards, S. J. (2012). A handbook of parametric survival models for actuarial use. Scandinavian
Actuarial Journal, 1-25.
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Examples

x <- seq(@0.1, 2.0, 0.1)
dperks(x, 5.0, 1.5)
pperks(x, 5.0, 1.5)
gperks(@.5, 5.0, 1.5)
rperks(10, 5.0, 1.5)
hperks(x, 5.0, 1.5)

# Data

x <- conductors

# ML estimates

params = list(alpha=4.5967e-4, beta=1.1077)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = pperks, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gperks, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dperks, pfun=pperks, plot=TRUE)
print.gofic(out)

PoisInvWeib Poisson Inverse Weibull Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson
Inverse Weibull distribution.

Usage
dpois.inv.weib(x, alpha, beta, lambda, log = FALSE)
ppois.inv.weib(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.inv.weib(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)

rpois.inv.weib(n, alpha, beta, lambda)
hpois.inv.weib(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter

log logical; if TRUE, returns log-density
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lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson Inverse Weibull distribution is parameterized by the parameters « > 0, 8 > 0, and
A>0.

The Poisson Inverse Weibull distribution has CDF:
1

F(z;a,8,)) = m [1 - exp{—)\exp (—(a/x)ﬁ)}] x> 0.

where «, 3, and \ are the parameters.

Value

* dpois.inv.weib: numeric vector of (log-)densities

* ppois.inv.weib: numeric vector of probabilities

* gpois.inv.weib: numeric vector of quantiles

* rpois.inv.weib: numeric vector of random variates

e hpois.inv.weib: numeric vector of hazard values

References

Kus, C. (2007). A new lifetime distribution. Computational Statistics and Data Analysis, 51, 4497—
4509.

Joshi, R. K., & Kumar, V. (2021). Poisson Inverse Weibull Distribution with Theory and Applica-
tions. International Journal of Statistics and Systems, 16(1), 1-16.

Rodrigues, G.C., Louzada, F., & Ramos, P.L.(2018). Poisson—exponential distribution: different
methods of estimation. Journal of Applied Statistics, 45(1), 128—144.

Examples

x <- seq(0.1, 10, 0.2)
dpois.inv.weib(x, 2.0, 0.5, 0.2)
ppois.inv.weib(x, 2.0, 0.5, 0.2)
gpois.inv.weib(@0.5, 2.9, 0.5, 0.2)
rpois.inv.weib(10, 2.0, 0.5, 0.2)
hpois.inv.weib(x, 2.0, 0.5, 0.2)

# Data

x <- fibers63

# ML estimates

params = list(alpha=5.5146, beta=1.8811, lambda=16.2341)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = ppois.inv.weib, fit.line=TRUE)
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#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.inv.weib, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.inv.weib, pfun=ppois.inv.weib, plot=TRUE)
print.gofic(out)

PoissonChen Poisson-Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson-
Chen distribution.

Usage
dpois.chen(x, alpha, beta, lambda, log = FALSE)
ppois.chen(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.chen(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.chen(n, alpha, beta, lambda)
hpois.chen(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson-Chen distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Poisson-Chen distribution has CDF:

F(z;a,8,\) = 1 L A{lfexp{f)\eﬁ(lfemu)” ;x> 0.

Tl —e
where «, 3, and \ are the parameters.

The following functions are included:



PoissonChen
* dpois.chen() — Density function
¢ ppois.chen() — Distribution function
¢ gpois.chen() — Quantile function
* rpois.chen() — Random generation
¢ hpois.chen() — Hazard function
Value
* dpois.chen: numeric vector of (log-)densities
* ppois.chen: numeric vector of probabilities
e gpois.chen: numeric vector of quantiles
e rpois.chen: numeric vector of random variates
¢ hpois.chen: numeric vector of hazard values
References

Joshi, R. K., & Kumar, V. (2021). Poisson Chen Distribution: Properties and Application.

national Journal of Latest Trends in Engineering and Technology, 18(4), 1-12.

Examples
x <- seq(0.1, 2.9, 0.2)
dpois.chen(x, 2.0, 0.5, 0.2)
ppois.chen(x, 2.0, 0.5, 0.2)
gpois.chen(0.5, 2.0, 0.5, 0.2)

rpois.chen(10, 2.0, 0.5, 0.2)
hpois.chen(x, 2.0, 0.5, 0.2)

# Data

x <- fibers63

# ML estimates

params = list(alpha=0.53679, beta=1.00238, lambda=108.22948)
#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.chen, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.chen, pfun=ppois.chen, plot=TRUE)
print.gofic(out)
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Inter-
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PoissonExpPower Poisson Exponential Power Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Poisson
Exponential Power distribution.

Usage
dpois.exp.pow(x, alpha, beta, lambda, log = FALSE)

ppois.exp.pow(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.exp.pow(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.exp.pow(n, alpha, beta, lambda)
hpois.exp.pow(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson Exponential Power distribution is parameterized by the parameters o > 0, 5 > 0, and
A > 0.

The Poisson Exponential Power distribution has CDF:

1 o
F(x;a,8,\)= 1-— m {1 —exp{—)\exp (1 — e )H ;x> 0.
where a, 3, and A are the parameters.

The following functions are included:

* dpois.exp.pow() — Density function

e ppois.exp.pow() — Distribution function
e gpois.exp.pow() — Quantile function

* rpois.exp.pow() — Random generation

¢ hpois.exp.pow() — Hazard function
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Value

* dpois.exp.pow: numeric vector of (log-)densities
* ppois.exp.pow: numeric vector of probabilities

* gpois.exp.pow: numeric vector of quantiles

* rpois.exp.pow: numeric vector of random variates

e hpois.exp.pow: numeric vector of hazard values

References

Joshi, R. K., & Kumar, V. (2020). Poisson Exponential Power distribution: Properties and Applica-
tion. International Journal of Mathematics & Computer Research, 8(11),2152-2158. doi:10.47191/
ijmer/v8il1.01

Examples

x <- seq(0.1, 2.0, 0.2)
dpois.exp.pow(x, 2.0, 0.5, 0.2)
ppois.exp.pow(x, 2.0, 0.5, 0.2)
gpois.exp.pow(@.5, 2.0, 0.5, 0.2)
rpois.exp.pow(10, 2.9, 0.5, 0.2)
hpois.exp.pow(x, 2.0, 0.5, 0.2)

# Data

X <- stress

# ML estimates

params = list(alpha=0.6976, beta=0.6395, lambda=7.8045)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.exp.pow, fit.line=TRUE)

#Q-Q (quantile—-quantile) plot
qq.plot(x, params = params, gfun = gpois.exp.pow, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.exp.pow, pfun=ppois.exp.pow, plot=TRUE)
print.gofic(out)

PoissonGenRayleigh Poisson Generalized Rayleigh (PGR) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the PGR dis-
tribution.


https://doi.org/10.47191/ijmcr/v8i11.01
https://doi.org/10.47191/ijmcr/v8i11.01

108 PoissonGenRayleigh

Usage
dpois.gen.rayleigh(x, alpha, beta, lambda, log = FALSE)
ppois.gen.rayleigh(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.gen.rayleigh(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.gen.rayleigh(n, alpha, beta, lambda)
hpois.gen.rayleigh(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The PGR distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The PGR distribution has CDF:

F(z;a,B8,\) = ﬁ[l—exp{—)\(l—efﬁmzyy” ;x> 0.

where «, 3, and \ are the parameters.

The functions available are listed below:

* dpois.gen.rayleigh() — Density function

e ppois.gen.rayleigh() — Distribution function
e gpois.gen.rayleigh() — Quantile function

* rpois.gen.rayleigh() — Random generation

¢ hpois.gen.rayleigh() — Hazard function

Value

* dpois.gen.rayleigh: numeric vector of (log-)densities
* ppois.gen.rayleigh: numeric vector of probabilities

* gpois.gen.rayleigh: numeric vector of quantiles

e rpois.gen.rayleigh: numeric vector of random variates

e hpois.gen.rayleigh: numeric vector of hazard values
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References

Joshi, R.K., & Kumar, V. (2021). Poisson Generalized Rayleigh Distribution with Properties and
Application. International Journal of Statistics and Applied Mathematics, 6(1), 90-99. doi:10.22271/
maths.2021.v6.i1b.637

Examples

x <- seq(@.1, 2.0, 0.2)
dpois.gen.rayleigh(x, 2.0, 0.5, 0.2)
ppois.gen.rayleigh(x, 2.0, 0.5, 0.2)
gpois.gen.rayleigh(0.5, 2.0, 9.5, 0.2)
rpois.gen.rayleigh(10, 2.0, 0.5, 0.2)
hpois.gen.rayleigh(x, 2.0, 0.5, 0.2)

# Data

X <- stress

# ML estimates

params = list(alpha=1.5466, beta=0.0211, lambda=16.4523)

#P-P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.gen.rayleigh, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
gq.plot(x, params = params, qgfun = gpois.gen.rayleigh, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.gen.rayleigh, pfun=ppois.gen.rayleigh, plot=TRUE)
print.gofic(out)

PoissonGPZ Poisson-Gompertz Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson-
Gompertz distribution.

Usage

dpois.gpz(x, alpha, beta, lambda, log = FALSE)
ppois.gpz(q, alpha, beta, lambda, lower.tail = TRUE, log.p
gpois.gpz(p, alpha, beta, lambda, lower.tail = TRUE, log.p
rpois.gpz(n, alpha, beta, lambda)

hpois.gpz(x, alpha, beta, lambda)

FALSE)
FALSE)


https://doi.org/10.22271/maths.2021.v6.i1b.637
https://doi.org/10.22271/maths.2021.v6.i1b.637
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Arguments

X’q

alpha

beta

lambda

log

lower.tail

log.p

p

n

Details

PoissonGPZ

numeric vector of quantiles (x, q)

positive numeric parameter

positive numeric parameter

positive numeric parameter

logical; if TRUE, returns log-density

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)

numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Poisson-Gompertz distribution is parameterized by the parameters « > 0, 5 > 0, and A > 0.

The Poisson-Gompertz distribution has CDF:

Flaa, B0 = 1- ﬁ {1 —exp{—)\exp (i (1 _em)> H 2> 0.

where «, 3, and )\ are the parameters.

The functions available are listed below:

Value

dpois.
ppois.
gpois.
rpois.

hpois.

dpois.
ppois.
gpois.
rpois.

hpois.

References

gpz () — Density function

gpz () — Distribution function

gpz () — Quantile function

gpz() — Random generation

gpz () — Hazard function

gpz:
gpz:
gpz:
gpz:
gpz:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Chaudhary,A.K., Sapkota,L.P., & Kumar, V. (2021). Poisson Gompertz Distribution with Properties

and Applications.

International Journal of Applied Engineering Research (IJEAR), 16(1),75-84.

doi:10.37622/1JAER/16.1.2021.7584


https://doi.org/10.37622/IJAER/16.1.2021.75-84
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Examples

x <- seq(0.1, 2.0, 0.2)
dpois.gpz(x, 2.0, 0.5, 0.2)
ppois.gpz(x, 2.0, 0.5, 0.2)
gpois.gpz(0.5, 2.0, 0.5, 0.2)
rpois.gpz(10, 2.0, 0.5, 0.2)
hpois.gpz(x, 2.0, 0.5, 0.2)

# Data

X <- stress

# ML estimates

params = list(alpha=0.2211, beta=0.6540, lambda=6.5456)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = ppois.gpz, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.gpz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.gpz, pfun=ppois.gpz, plot=FALSE)
print.gofic(out)
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PoissonInvLomax Poisson Inverse Lomax Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson

Inverse Lomax distribution.

Usage

dpois.inv.lomax(x, alpha, beta, lambda, log = FALSE)
ppois.inv.lomax(q, alpha, beta, lambda, lower.tail = TRUE, log.p
gpois.inv.lomax(p, alpha, beta, lambda, lower.tail = TRUE, log.p
rpois.inv.lomax(n, alpha, beta, lambda)

hpois.inv.lomax(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter

log logical; if TRUE, returns log-density

FALSE)
FALSE)
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lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson Inverse Lomax distribution is parameterized by the parameters o« > 0, § > 0, and
A>0.

The Poisson Inverse Lomax distribution has CDF:
1

A= [1—exp{-A1+8/x)"*}] ;x>0

F(z;a,8,\) = i

where «, 3, and ) are the parameters.

The functions available are listed below:

e dpois.inv.lomax() — Density function

* ppois.inv.lomax() — Distribution function
e gpois.inv.lomax() — Quantile function

* rpois.inv.lomax() — Random generation

¢ hpois.inv.lomax() — Hazard function

Value

* dpois.inv.lomax: numeric vector of (log-)densities

* ppois.inv.lomax: numeric vector of probabilities

* gpois.inv.lomax: numeric vector of quantiles

e rpois.inv.lomax: numeric vector of random variates

¢ hpois.inv.lomax: numeric vector of hazard values

References

Joshi, R.K., & Kumar, V. (2021). Poisson Inverted Lomax Distribution: Properties and Applica-
tions. International Journal of Research in Engineering and Science (IJRES), 9(1), 48-57.

Chaudhary, A. K., & Kumar, V.(2021). The ArcTan Lomax Distribution with Properties and
Applications. International Journal of Scientific Research in Science, Engineering and Technol-
0gy(IJSRSET), 8(1), 117-125. doi:10.32628/IJSRSET218117


https://doi.org/10.32628/IJSRSET218117
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Examples

x <- seq(0.1, 10, 0.2)
dpois.inv.lomax(x, 2.0, 0.5, 0.2)
ppois.inv.lomax(x, 2.0, 0.5, 0.2)
gpois.inv.lomax(@.5, 2.0, 0.5, 0.2)
rpois.inv.lomax(10, 2.0, 0.5, 0.2)
hpois.inv.lomax(x, 2.0, 0.5, 0.2)

# Data

X <- stress

# ML estimates

params = list(alpha=4.1507, beta=5.4091, lambda=80.5762)

#P—P (probability—-probability) plot

pp.plot(x, params = params, pfun = ppois.inv.lomax, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.inv.lomax, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.inv.lomax, pfun=ppois.inv.lomax, plot=FALSE)
print.gofic(out)

PoissonInvNHE Poisson Inverse NHE Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson
Inverse NHE distribution.

Usage
dpois.inv.NHE(x, alpha, beta, lambda, log = FALSE)
ppois.inv.NHE(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.inv.NHE(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)

rpois.inv.NHE(n, alpha, beta, lambda)
hpois.inv.NHE(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter

log logical; if TRUE, returns log-density
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lower.tail

log.p

p
n

Details

PoissonInvNHE

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
logical; if TRUE, probabilities are given as log(p)
numeric vector of probabilities (0 <p < 1)

number of observations (integer > 0)

The Poisson Inverse NHE distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Poisson Inverse NHE distribution has CDF:

1—exp [-dexp {1 — (1 +a/z)’}]

F(z;a,B,\) = ;> 0.

1 —exp(—\)

where «, 3, and A are the parameters.

The following functions are included:

Value

dpois.inv.NHE() — Density function

ppois.
gpois.
rpois.

hpois.

dpois.
ppois.
gpois.
rpois.

hpois.

References

inv

inv.
inv.

inv.

inv
inv
inv
inv

inv

.NHE () — Distribution function
NHE () — Quantile function
NHE () — Random generation
NHE () — Hazard function

.NHE: numeric vector of (log-)densities
.NHE: numeric vector of probabilities
.NHE: numeric vector of quantiles

.NHE: numeric vector of random variates

.NHE: numeric vector of hazard values

Chaudhary,A.K.& Kumar, V.(2020). Poisson Inverse NHE Distribution. International Journal of
Science and Research(IJSR), 9(12), 1603-1610.

Examples

x <- seq(0.1, 10, 0.2)

dpois.
ppois.
gpois.
rpois.
hpois.

# Dat

a

x <- fibers63
# ML estimates

inv.NHE(x, 2.0, 0.5, 0.2)
inv.NHE(x, 2.0, 0.5, 0.2)
inv.NHE(@.5, 2.0, 0.5, 0.2)
inv.NHE(10, 2.0, 0.5, 0.2)
inv.NHE(x, 2.0, 0.5, 0.2)
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params = list(alpha=1.0174, beta=5.1414, lambda=23.3476)
#P—P (probability—-probability) plot
pp.plot(x, params = params, pfun = ppois.inv.NHE, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.inv.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.inv.NHE, pfun=ppois.inv.NHE, plot=FALSE)
print.gofic(out)

PoissonInvSGZ Poisson Inverse Shifted Gompertz (PISG) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson
Inverse Shifted Gompertz distribution.

Usage

dpois.inv.sgz(x, alpha, beta, lambda, log = FALSE)

ppois.inv.sgz(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.inv.sgz(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.inv.sgz(n, alpha, beta, lambda)
hpois.inv.sgz(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (x, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)

n number of observations (integer > 0)
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Details

PoissonlnvSGZ

The Poisson Inverse Shifted Gompertz distribution is parameterized by the parameters o« > 0,
B> 0,and A > 0.

The Poisson Inverse Shifted Gompertz distribution has CDF:

F(z;a,8,\)=1— (1_%/\) [1 —exp{—)\ <1 —675/90) exp (—aefﬁ/iE) H ;x> 0.

where «, 3, and \ are the parameters.

The following functions are included:

Value

dpois

ppois.
gpois.
rpois.

hpois.

dpois.
ppois.
gpois.
rpois.

hpois.

References

.inv.sgz() — Density function

inv.
inv.
inv.

inv.

inv.
inv.
inv.
inv.

inv.

sgz () — Distribution function

sgz () — Quantile function

sgz() — Random generation

sgz () — Hazard function

sgz:
sgz:
sgz:
sgz:

sgz:

numeric vector of (log-)densities
numeric vector of probabilities
numeric vector of quantiles
numeric vector of random variates

numeric vector of hazard values

Sapkota, L. P., Kumar, V., Tekle, G., Alrweili, H., Mustafa, M. S., & Yusuf, M. (2025). Fitting Real
Data Sets by a New Version of Gompertz Distribution. Modern Journal of Statistics, 1(1), 25-48.
doi:10.64389/mjs.2025.01109

Examples

x <- seq(0.1, 10, 0.2)

dpois.
ppois.
gpois.
rpois.
hpois.

# Dat

a

x <- fibers69
# ML estimates
params = list(alpha=98.0893, beta=10.6326, lambda=2.1006)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.inv.sgz, fit.line=TRUE)

inv.sgz(x, 2.0, 0.5, 0.2
inv.sgz(x, 2.0, 0.5, 0.2
inv.sgz(0.5, 2.0, 0.5, 0.2)
inv.sgz(10, 2.0, 0.5, 0.2)
inv.sgz(x, 2.0, 0.5, 0.2)

)
)


https://doi.org/10.64389/mjs.2025.01109
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#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.inv.sgz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.inv.sgz, pfun=ppois.inv.sgz, plot=FALSE)
print.gofic(out)

PoissonNHE Poisson-NHE Distribution

Description
Provides density, distribution, quantile, random generation, and hazard functions for the Poisson-
NHE distribution.

Usage

dpois.NHE(x, alpha, beta, lambda, log = FALSE)

ppois.NHE(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.NHE(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.NHE(n, alpha, beta, lambda)
hpois.NHE(x, alpha, beta, lambda)
Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson-NHE distribution is parameterized by the parameters o > 0, 8 > 0, and A > 0.
The Poisson-NHE distribution has CDF:

l—exp (—Xexp {{1 - (1+ az)’}})

Flz;a,8,\) = 1 =y

;x> 0.
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where «, 3, and \ are the parameters.

The following functions are included:

* dpois.NHE() — Density function

e ppois.NHE() — Distribution function
¢ gpois.NHE() — Quantile function

* rpois.NHE() — Random generation

¢ hpois.NHE() — Hazard function

Value

* dpois.NHE: numeric vector of (log-)densities
* ppois.NHE: numeric vector of probabilities

* gpois.NHE: numeric vector of quantiles

e rpois.NHE: numeric vector of random variates

¢ hpois.NHE: numeric vector of hazard values

References

Chaudhary,A.K., & Kumar, V.(2020). Poisson NHE Distribution: Properties and Applications. In-
ternational Journal of Applied Research(IJAR), 6(12),399-409. doi:10.22271/allresearch.2020.v6.112f.8143

Examples
x <- seq(0.1, 10, 0.2)
dpois.NHE(x, 2.0, 0.5, 0.2)
ppois.NHE(x, 2.0, 0.5, 0.2)

gpois.NHE(0.5, 2.0, 0.5, 0.2)
rpois.NHE(10, 2.0, 0.5, 0.2)
hpois.NHE(x, 2.0, 0.5, 0.2)

# Data

x <- fibers63

# ML estimates

params = list(alpha=0.5038, beta=1.8272, lambda=53.4573)
#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.NHE, fit.line=TRUE)

#Q-Q (quantile—quantile) plot
qq.plot(x, params = params, gfun = gpois.NHE, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.NHE, pfun=ppois.NHE, plot=FALSE)
print.gofic(out)


https://doi.org/10.22271/allresearch.2020.v6.i12f.8143
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PoissonSGZ Poisson Shifted Gompertz (PSG) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Poisson
Shifted Gompertz distribution.

Usage

dpois.shifted.gz(x, alpha, beta, lambda, log = FALSE)

ppois.shifted.gz(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
gpois.shifted.gz(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rpois.shifted.gz(n, alpha, beta, lambda)

hpois.shifted.gz(x, alpha, beta, lambda)

Arguments
X, q numeric vector of quantiles (X, q)
alpha positive numeric parameter
beta positive numeric parameter
lambda positive numeric parameter
log logical; if TRUE, returns log-density
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities are given as log(p)
p numeric vector of probabilities (0 <p < 1)
n number of observations (integer > 0)
Details

The Poisson Shifted Gompertz distribution is parameterized by the parameters o > 0, § > 0, and
A>0.

The Poisson Shifted Gompertz distribution has CDF:

ﬁ {1—exp[-A{1-(1—e")exp(—ac™™)}]} ;z>0.

where «, 3, and \ are the parameters.

F(z;a,8,)\) =

The following functions are included:

* dpois.shifted.gz() — Density function

¢ ppois.shifted.gz() — Distribution function
e gpois.shifted.gz() — Quantile function

* rpois.shifted.gz() — Random generation
e hpois.shifted.gz() — Hazard function
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Value

* dpois.shifted.gz: numeric vector of (log-)densities

* ppois.shifted.gz: numeric vector of probabilities

* gpois.shifted.gz: numeric vector of quantiles

e rpois.shifted.gz: numeric vector of random variates

¢ hpois.shifted.gz: numeric vector of hazard values

References

Chaudhary,A.K., & Kumar, V. (2021). Poisson Shifted Gompertz Distribution: Properties and Ap-
plications. International Journal of Recent Technology and Engineering (IJRTE) ,9(5),202-208.
doi:10.35940/ijrte.E5265.019521

Examples

x <- seq(@.1, 10, 0.2)
dpois.shifted.gz(x, 2.0, 0.5, 0.2)
ppois.shifted.gz(x, 2.0, 0.5, 0.2)
gpois.shifted.gz(0.5, 2.0, 0.5, 0.2)
rpois.shifted.gz(10, 2.0, 0.5, 0.2)
hpois.shifted.gz(x, 2.0, 0.5, 0.2)

# Data

x <- fibers63

# ML estimates

params = list(alpha=13.5877, beta=2.0139, lambda=18.8875)

#P—P (probability-probability) plot

pp.plot(x, params = params, pfun = ppois.shifted.gz, fit.line=TRUE)

#Q-Q (quantile-quantile) plot
qq.plot(x, params = params, gfun = gpois.shifted.gz, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,

dfun = dpois.shifted.gz, pfun=ppois.shifted.gz, plot=FALSE)
print.gofic(out)

pp.plot Generic Probability-Probability(P—P) Plot Function

Description

Generates a P—P (probability—probability) plot for any custom or built-in probability distribution.
The function compares the empirical probabilities of the sample data with the theoretical probabil-
ities computed from a user-specified cumulative distribution function (CDF).
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Usage

pp.plot(sample, pfun, params, fit.line = TRUE)

Arguments
sample A numeric vector of sample observations.
pfun A cumulative distribution function (CDF) corresponding to the theoretical dis-
tribution (e.g., pnorm, pexp, or a custom CDF).
params A named list of distribution parameters (e.g., lList(mean =@, sd = 1) or list(alpha
=2, lambda =1)).
fit.line Logical; if TRUE (default), a red least-squares regression line is added to the plot.
Also, displays the regression line equation and R? value on the plot.
Details

The P-P plot is used to assess how closely the empirical distribution of a dataset matches a specified
theoretical distribution. The points should ideally fall along the 45° reference line if the model fits
well.

Requires user-defined function 'pfun’ for the CDF of the user-defined continuous distribution.

Missing values in the sample are automatically removed with a warning.

Value

This function returns no value; it produces a P—P plot.

Examples

# Example 1: Exponential distribution
set.seed(123)

x <- rexp(100, rate = 2)

pp.plot(x, pexp, list(rate = 2))

# Example 2: Customizing the fitted line
pp.plot(x, pexp, list(rate = 2),
fit.line = TRUE)

# Example 3: Without regression line
pp.plot(x, pexp, list(rate = 2), fit.line = FALSE)

# Example 4: Display regression equation and R2 value
pp.plot(x, pexp, list(rate = 2))

# Example 5: For a user defined distribution

# Exponentiated Exponential Power (EEP) Distribution

# Data

X <- waiting

pp.plot(x,
params = list(alpha=0.3407, lambda=0.6068, theta=7.6150),
pfun = pgen.exp.power, fit.line=TRUE)
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print.gofic Print Method for gofic Objects

Description

Nicely formats and prints the results produced by gofic().

Usage
## S3 method for class 'gofic'
print(x, ...)
Arguments
X An object of class "gofic" as returned by gofic().
Further arguments (currently unused).
Value

The input object x, returned invisibly. No value is returned for computational purposes; used for
side effects.

See Also

gofic

qq.plot Generic Quantile-Quantile(Q-Q) Plot Function

Description

Generates a Q-Q (quantile—quantile) plot for any custom or built-in probability distribution. The
function compares sample quantiles with theoretical quantiles computed using a user-specified
quantile function.

Usage

qq.plot(sample, gfun, params, fit.line = FALSE)

Arguments
sample A numeric vector of sample observations.
gfun A quantile function corresponding to the theoretical distribution (e.g., gnorm,
gexp, or a custom quantile function).
params A named list of distribution parameters (e.g., List(mean =@, sd = 1) or list(alpha
=2, lambda =1)).
fit.line Logical; if TRUE (default), a red least-squares regression line is added to the plot.

Also, displays the regression line equation and R-square value on the plot.
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Details

The function is general and can be used with any continuous distribution for which a quantile
function is available. It overlays both a 45° reference line and (optionally) a fitted linear regression
line through the points, enabling visual assessment of model fit. Also, displays the regression line
equation and R? value on the plot.

Requires user-defined function 'qfun’ for the CDF of the user-defined continuous distribution.

Missing values in the sample are automatically removed with a warning.

Value

This function returns no value; it produces a Q-Q plot.

Examples

# Example 1: Exponential distribution
set.seed(123)

x <- rexp(100, rate = 2)

qq.plot(x, gexp, list(rate = 2))

# Example 2: Customizing the fitted line
qq.plot(x, gexp, list(rate = 2),
fit.line = TRUE)

# Example 3: Without regression line
qq.plot(x, gexp, list(rate = 2), fit.line = FALSE)

# Example 4: Display regression equation and R-square value
qq.plot(x, qgexp, list(rate = 2), fit.line = TRUE)

# Example 5: For a user defined distribution
# Exponentiated Exponential Power (EEP) Distribution

#Data
x <- waiting
qq.plot(x,
params = list(alpha=0.3407, lambda=0.6068, theta=7.6150),
gfun = ggen.exp.power, fit.line=TRUE)
rainfall March Rainfall in Minneapolis/St. Paul
Description

A dataset of thirty consecutive March precipitation values (in inches) recorded in Minneapolis/St.
Paul. These data were originally presented by Hinkley (1977) in the context of power transforma-
tions and applied statistical analysis.
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Usage

rainfall

Format

A numeric vector of length 30 containing March rainfall amounts in inches.

Details

Hinkley (1977) used this dataset to illustrate methods for selecting power transformations in statisti-
cal modeling. The dataset is frequently cited in regression diagnostics and transformation literature.

Value

An object of class "numeric”.

The vector consists of 30 observed precipitation amounts (in inches) recorded for the month of
March in Minneapolis/St. Paul over consecutive years. Each value represents the total March rain-
fall for a single year. The dataset is commonly used to illustrate power transformations, regression
diagnostics, and exploratory data analysis techniques in applied statistics.

References

Hinkley, D. (1977). On quick choice of power transformations. Journal of the Royal Statistical
Society, Series C (Applied Statistics), 26, 67—69.

Examples

summary (rainfall)

hist(
rainfall,
main = "March Rainfall Histogram”,
xlab = "Rainfall (inches)"”

)

plot(
rainfall,
type = "0",
main = "March Rainfall Series”,
ylab = "Inches”,
xlab = "Observation”
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reactorpump Failure Time Intervals of Secondary Reactor Pumps

Description

This dataset contains the time intervals between failures (in thousands of hours) of secondary reactor
pumps. The data were reported by Salman Suprawhardana, Prayoto, and Sangadji (1999) and later
analyzed in Bebbington, Lai, and Zitikis (2007) in the context of flexible Weibull extensions.

Usage

reactorpump

Format

A numeric vector of length 23 containing time intervals between pump failures, measured in thou-
sands of hours.

Details

These data are commonly used in the reliability engineering literature, particularly for assessing
lifetime distributions, hazard shapes, and model flexibility in mechanical systems. The pump failure
times originate from components of the RSG-GAS reactor.

Value

An object of class "numeric”.

The vector consists of 23 observed time intervals between successive failures of secondary reactor
pumps, measured in thousands of operating hours. Each value represents the elapsed time between
two consecutive failure events for a pump component. The dataset is commonly used in reliability
engineering and survival analysis for modeling lifetime distributions, studying hazard rate shapes,
and evaluating the flexibility of parametric failure-time models.

References

Bebbington, M., Lai, C.-D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engi-
neering and System Safety, 92, 719-726.

Salman Suprawhardana, M., Prayoto, & Sangadji (1999). Total time on test plot analysis for me-
chanical components of the RSG-GAS reactor. Afom Indones, 25(2).

Examples

summary (reactorpump)

plot(
reactorpump,
type = "b",
main = "Reactor Pump Failure Intervals”,
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ylab = "Thousands of Hours”,
xlab = "Observation”

)

hist(
reactorpump,
main = "Histogram of Failure Intervals”,
xlab = "Thousands of Hours”

)

relief Relief Times of Patients Receiving an Analgesic
Description

This dataset contains the relief times (in hours) of 20 patients who received an analgesic. The data
were originally presented by Gross and Clark (1976) in their work on survival distributions and
reliability applications in biomedical sciences.

Usage

relief

Format

A numeric vector of length 20 containing relief times in hours.

Details

The dataset is frequently used in survival analysis to illustrate basic distributional behavior, relia-
bility concepts, and nonparametric survival estimation. It serves as a benchmark example in many
survival analysis textbooks.

Value

An object of class "numeric”.

The vector consists of 20 observed relief times (in hours), each corresponding to a single patient
who received an analgesic treatment. Each value represents the time elapsed from administration
of the analgesic to the onset of pain relief. The dataset is commonly used in survival and reliability
analysis to illustrate lifetime distributions, time-to-event modeling, and nonparametric estimation
techniques.

References

Gross, A. J., & Clark, V. A. (1976). Survival Distributions: Reliability Applications in the Biomed-
ical Sciences. Wiley, New York.
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Examples
summary (relief’)
hist(
relief,
main = "Relief Times Histogram”,
xlab = "Relief Time (hours)”
)
plot(
relief,
type = "b",
main = "Relief Times",

xlab = "Patient”,
ylab = "Time (hours)”

stress Breaking Stress of Carbon Fibres

Description

The dataset contains 100 observations on the breaking stress (in GPa) of carbon fibres. These
measurements were originally reported in Nichols and Padgett (2006) in the context of bootstrap
control charts for Weibull percentiles.

Usage

stress

Format

A numeric vector of length 100 giving observed breaking stress values (in GPa).

Details

The breaking stress of carbon fibres is an important characteristic in materials science and reliability
engineering. The data have been widely used in studies involving Weibull distributions, reliability
modelling, and bootstrap-based inference.

The dataset is frequently cited in literature dealing with Weibull percentiles and nonparametric
control charts.

Value

An object of class "numeric”.

The vector consists of 100 observed breaking stress measurements (in gigapascals) for individual
carbon fibre specimens. Each value represents the stress level at which a single fibre failed. The
dataset is commonly used in reliability engineering and materials science for modeling strength
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distributions, fitting Weibull models, and illustrating bootstrap-based inference and control chart
methods.

References

Nichols, M. D., & Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality
and Reliability Engineering International, 22, 141-151.

Examples

stress

# Summary statistics
summary (stress)

# Histogram

hist(
stress,
main = "Breaking Stress of Carbon Fibres”,
xlab = "Stress (GPa)"

)

stress31 Fatigue Life of 6061-T6 Aluminum Coupons under 31,000 psi

Description

Fatigue life measurements (in thousands of cycles) of 6061-T6 aluminum coupons cut parallel to
the direction of rolling and oscillated at 18 cycles per second (cps). The dataset contains 101
observations and was originally analyzed by Birnbaum and Saunders (1969).

Usage

stress3i

Format

A numeric vector of length 101 representing fatigue life measurements of aluminum coupons sub-
jected to 31,000 psi maximum stress per cycle.

Details

This dataset corresponds to the well-known Birnbaum—Saunders fatigue life example. The data
represent time-to-failure observations collected from aluminum coupons tested in a controlled ex-
perimental setup. These data have been widely used in the literature to illustrate lifetime modeling,
particularly the Birnbaum—Saunders distribution.
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Value

An object of class "numeric”.

The vector consists of 101 observed fatigue life measurements, expressed in thousands of cycles to
failure, for individual 6061-T6 aluminum coupons tested under a maximum cyclic stress of 31,000
psi. Each value represents the number of load cycles endured by a coupon before failure. The
dataset is widely used in reliability engineering and survival analysis to illustrate lifetime modeling
and inference based on the Birnbaum—Saunders fatigue life distribution.

References
Birnbaum, Z. W., & Saunders, S. C. (1969). Estimation for a family of life distributions with
applications to fatigue. Journal of Applied Probability, 6, 328-347. doi:10.2307/3212004
Examples
data(stress31)
summary (stress31)
hist(

stress31,
main = "Fatigue Life at 31,000 psi”,

xlab = "Cycles to Failure (thousands)”
)
stress66 Breaking Stress of 66 Carbon Fibers of Length 50 mm
Description

This dataset contains the breaking stress (in GPa) of 66 carbon fibers of length SO mm. The data
were originally used by Nichols and Padgett (2006) in their study on bootstrap control charts for
Weibull percentiles.

Usage

stress66

Format

A numeric vector of length 66 containing breaking stress values measured in gigapascals (GPa).

Details

The carbon fiber breaking stress dataset is commonly used in reliability analysis, survival models,
and goodness-of-fit studies involving lifetime and strength distributions. Nichols and Padgett (2006)
applied these data in developing bootstrap control charts based on Weibull percentiles.


https://doi.org/10.2307/3212004
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Value

An object of class "numeric”.

The vector consists of 66 observed breaking stress measurements (in gigapascals) for individual car-
bon fiber specimens of length 50 mm. Each value represents the stress level at which a single fiber
failed. The dataset is commonly used in reliability analysis, survival modeling, and goodness-of-fit
studies involving strength and lifetime distributions, particularly Weibull models and bootstrap-
based control charts.

References

Nichols, M. D., & Padgett, W. J. (2006). A Bootstrap Control Chart for Weibull Percentiles. Quality
and Reliability Engineering International, 22(2), 141-151.

Examples
summary (stress66)
plot(
stress66,
type = "h",
main = "Breaking Stress Values”,
xlab = "Observation”,
ylab = "Stress (GPa)"
)
hist(
stress66,
main = "Histogram of Breaking Stress”,
xlab = "Stress (GPa)"
)
survtimes Survival Times of Guinea Pigs Infected with Tubercle Bacilli
Description

The survtimes data set contains the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli. These data were originally reported by Bjerkedal (1960) in a study of the acquisition
of resistance in guinea pigs subjected to varying doses of tubercle bacilli.

Usage

data(survtimes)

Format

A numeric vector of length 72 giving the survival times (in days).
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Details

This dataset represents experimentally observed survival durations of guinea pigs infected with
virulent tubercle bacilli. Survival analysis and lifetime modeling studies commonly use this dataset
as an example for illustrating various statistical methodologies.

Value

An object of class "numeric”.

The vector consists of 72 observed survival times (in days), each corresponding to a single guinea
pig experimentally infected with virulent tubercle bacilli. Each value represents the number of days
from infection to death or end of observation. The dataset is commonly used in survival analysis
and lifetime modeling to illustrate time-to-event data, hazard behavior, and comparative statistical
methods.

References

Bjerkedal, T. (1960). Acquisition of Resistance in Guinea Pigs Infected with Different Doses of
Virulent Tubercle Bacilli. American Journal of Hygiene, 72(1), 130-148.

Examples

data(survtimes)

# Basic summary
summary (survtimes)

# Plotting a simple histogram of survival times

hist(
survtimes,
main = "Survival Times of Guinea Pigs",
xlab = "Days",
col = "lightgray"”,
border = "white”

)

waiting Waiting Times of 100 Bank Customers
Description

This dataset contains the waiting times (in minutes) of 100 bank customers, as originally analyzed
in Ghitany, Atieh, and Nadarajah (2008) in their study on the Lindley distribution.

Usage

waiting
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Format

A numeric vector of length 100 containing waiting times in minutes.

Details

These data were used to illustrate applications of the Lindley distribution in modeling waiting times.
The dataset has been cited widely in reliability and lifetime distribution literature.

Value

An object of class "numeric”.

The vector consists of 100 observed waiting times (in minutes), each corresponding to a single bank
customer. Each value represents the amount of time a customer waited before receiving service.
The dataset is commonly used in reliability analysis and applied probability to illustrate lifetime
and waiting-time distributions, particularly the Lindley distribution.

References

Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its application. Mathe-
matics and Computers in Simulation, 78, 493-506.

Examples

summary (waiting)

hist(
waiting,
main = "Histogram of Waiting Times",
xlab = "Minutes”

)

windshield Service Times of Aircraft Windshields

Description

The windshield data set contains the service times (in years) of 63 aircraft windshields. These data
have been widely used in the reliability literature, particularly for illustrating Weibull and related
lifetime models.

Usage
data(windshield)

Format

A numeric vector of length 63 giving the service times of aircraft windshields.
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Details

This dataset has been extensively analyzed in the context of reliability modeling, including Weibull
models, compound lifetime models, and extended distributions such as the Weibull-Lomax distri-
bution. The observations represent the time-to-failure of protective aircraft windshields and serve
as a benchmark for demonstrating statistical methods for reliability and survival analysis.

Value

An object of class "numeric”.

The vector consists of 63 observed service times (in years), each corresponding to a single aircraft
windshield. Each value represents the time elapsed from installation until failure or replacement
of a windshield. The dataset is commonly used in reliability engineering and survival analysis
to model time-to-failure behavior, study hazard rate shapes, and illustrate Weibull and extended
lifetime distributions.

References

Murthy, D. N. P, Xie, M., & Jiang, R. (2004). Weibull Models. Wiley.

Blischke, W. R., & Murthy, D. N. P. (2000). Reliability: Modeling, Prediction, and Optimization.
Wiley, New York.

Examples
data(windshield)

# Basic summary of the dataset
summary (windshield)

# Histogram of service times

hist(
windshield,
main = "Service Times of Aircraft Windshields”,
xlab = "Service Time (years)”,

col = "lightgray”,
border = "white”



Index

+ datasets
bladder, 5
conductors, 8
fibers63, 13
fibers65, 14
fibers69, 15
headneck44, 34
rainfall, 123
reactorpump, 125
relief, 126
stress, 127
stress31, 128
stress66, 129
survtimes, 130
waiting, 131
windshield, 132

ad.test, 17
bladder, 5

ChenExp, 6
conductors, 8
cvm.test, 17

dchen.exp (ChenExp), 6
dexpo.inv.chen (ExpoInvChen), 11
dgen.exp.power (ExpoExpPower), 9
dgompertz.ext (GompertzExt), 18
dhc. chen (HCChen), 20
dhc.gen.exp (HCGenExp), 22

dhc.gen.rayleigh (HCGenRayleigh), 24

dhc. gpz (HCGompertz), 26
dhc.inv.gpz (HCInvGPZ), 28
dhc.inv.NHE (HCInvNHE), 30
dhc . NHE (HCNHE), 32

dHL.inv.weib (HLIW), 35

dHL . nhe (HLNHE), 36
dinv.exp.power (InvExpPower), 40
dinv.expo.exp.pois (InvEEP), 38

dinv
dinv
dinv
dinv
dinv

.gen.gpz (InvGenGPZ), 42

.pham (InvPham), 44

.pow. cauchy (InvPowerCauchy), 46
.sgz (InvSGZ), 48

.ubd (InvUBD), 49

dlind.exp.pow (LindleyExpPower), 53
dlind.ginv.exp (LindleyGIE), 55
dlindley.chen (LindleyChen), 51
dlindley.gpz (LindleyGompertz), 57
dlindley.HC (LindleyHC), 59
dlindley.inv.exp (LindleyInvExp), 60

dlindley.

inv.weib (LindleyInvWeibull),
62

dlindley.rlh(LindleyRayleigh), 64
dlogis.chen (LogisChen), 66
dlogis.exp.ext (LogisExpExt), 68
dlogis.exp.power (LogisExpPower), 69
dlogis.gpz (LogisGompertz), 71
dlogis.inv.exp (LogisInvExp), 73
dlogis.inv.lomax (LogisInvLomax), 75
dlogis.inv.weib (LogisInvWeibull), 77
dlogis.lomax (LogisLomax), 79
dlogis.mod.exp (LogisModExp), 80
dlogis.NHE (LogisNHE), 82
dlogis.rayleigh (LogisRayleigh), 84
dlogis.weib (LogisWeib), 86

dmod
dmod
dmod
dmod
dmod
dmod

.atan.exp (ModAtanExp), 88
.gen.exp (ModGE), 90
.inv.gen.exp (ModInvGE), 91
.inv.lomax (ModInvLomax), 93
.inv.NHE (ModInvNHE), 95
.ubd (ModUbd), 97

dNLindley.HC (NewLindleyHC), 98
dperks (Perks), 100

dpois.chen (PoissonChen), 104
dpois.exp.pow (PoissonExpPower), 106
dpois.gen.rayleigh

(PoissonGenRayleigh), 107

dpois.gpz (PoissonGPZ), 109



INDEX 135

dpois.inv.lomax (PoissonInvLomax), 111 hlindley.HC (LindleyHC), 59
dpois.inv.NHE (PoissonInvNHE), 113 hlindley.inv.exp (LindleyInvExp), 60
dpois.inv.sgz (PoissonInvSGZ), 115 hlindley.inv.weib (LindleyInvWeibull),
dpois.inv.weib (PoisInvWeib), 102 62
dpois.NHE (PoissonNHE), 117 hlindley.rlh (LindleyRayleigh), 64
dpois.shifted.gz (PoissonSGZ), 119 HLIW, 35

HLNHE, 36
ExpoExpPower, 9 hlogis.chen (LogisChen), 66
ExpoInvChen, 11 hlogis.exp.ext (LogisExpExt), 68

hlogis.exp.power (LogisExpPower), 69
hlogis.gpz (LogisGompertz), 71
hlogis.inv.exp (LogisInvExp), 73
hlogis.inv.lomax (LogisInvLomax), 75
hlogis.inv.weib (LogisInvWeibull), 77
hlogis.lomax (LogisLomax), 79
hlogis.mod.exp (LogisModExp), 80
hlogis.NHE (LogisNHE), 82
hlogis.rayleigh (LogisRayleigh), 84
hlogis.weib (LogisWeib), 86
hmod.atan.exp (ModAtanExp), 88

hchen. exp (ChenExp), 6 hmod.gen.exp (ModGE), 90

HCINVGPZ, 28 hmod.}nv.gen.exp (ModInvGE), 91
HCInVNHE, 30 hmod.}nv. lomax (ModInvLomax), 93
HCNHE, 32 hmod. inv.NHE (ModInvNHE), 95
headneck44, 34 hmod . ubd (ModUbd), 97

hexpo.inv.chen (ExpoInvChen), 11 hNLindley.HC (NewLindleyHC), 98

hgen.exp.power (ExpoExpPower), 9 hper.‘ks (Perks),.IOO
hgompertz. ext (GompertzExt), 18 hpois.chen (PoissonChen), 104

fibers63, 13
fibers65, 14
fibers69, 15

gofic, 16, 122
GompertzExt, 18

HCChen, 20
HCGenExp, 22
HCGenRayleigh, 24
HCGompertz, 26

hhc. chen (HCChen), 20 hpois.exp.pow (PoissonExpPower), 106
hhc.gen.exp (HCGenExp), 22 hpois.gen.rayleigh .
hhc.gen.rayleigh (HCGenRayleigh), 24 (PoissonGenRayleigh), 107
hhc. gpz (HCGompertz), 26 hpois.gpz (PoissonGPZ), 109
hhc.inv.gpz (HCINVGPZ), 28 hpois.inv.lomax (PoissonInvLomax), 111
hhc. inv.NHE (HCInvNHE), 30 hpois.inv.NHE (PoissonInvNHE), 113
hhc.NHE (HCNHE), 32 hpois.inv.sgz (PoissonInvSGZ), 115
hHL.inv.weib (HLIW), 35 hpois.inv.weib (PoisInvWeib), 102
hHL . nhe (HLNHE), 36 hpois.NHE (PoissonNHE), 117
hinv.exp.power (InvExpPower), 40 hpois.shifted.gz (PoissonSGZ), 119
hinv.expo.exp.pois (InvEEP), 38

hinv.gen.gpz (InvGenGPZ), 42 InvEEP, 38

hinv.pham (InvPham), 44 InvExpPower, 40

hinv.pow.cauchy (InvPowerCauchy), 46 InvGenGPZ, 42

hinv.sgz (InvSGZ), 48 InvPham, 44

hinv.ubd (InvUBD), 49 InvPowerCauchy, 46

hlind.exp.pow (LindleyExpPower), 53 InvSGZ, 48

hlind.ginv.exp (LindleyGIE), 55 InvUBD, 49

hlindley.chen (LindleyChen), 51
hlindley.gpz (LindleyGompertz), 57 ks.test, 17



136

LindleyChen, 51
LindleyExpPower, 53
LindleyGIE, 55
LindleyGompertz, 57
LindleyHC, 59
LindleyInvExp, 60
LindleyInvWeibull, 62
LindleyRayleigh, 64
LogisChen, 66
LogisExpExt, 68
LogisExpPower, 69
LogisGompertz, 71
LogisInvExp, 73
LogisInvLomax, 75
LogisInvWeibull, 77
LogisLomax, 79
LogisModExp, 80
LogisNHE, 82
LogisRayleigh, 84
LogisWeib, 86

ModAtanExp, 88
ModGE, 90
ModInvGE, 91
ModInvLomax, 93
ModInvNHE, 95
ModUbd, 97

NeuDist (NeuDist-package), 3
NeuDist-package, 3
NewLindleyHC, 98

pchen.exp (ChenExp), 6

Perks, 100

pexpo.inv.chen (ExpoInvChen), 11
pgen.exp.power (ExpoExpPower), 9
pgompertz.ext (GompertzExt), 18
phc.chen (HCChen), 20
phc.gen.exp (HCGenExp), 22
phc.gen.rayleigh (HCGenRayleigh), 24
phc.gpz (HCGompertz), 26
phc.inv.gpz (HCInvGPZ), 28
phc.inv.NHE (HCInvNHE), 30

phc . NHE (HCNHE), 32

pHL.inv.weib (HLIW), 35

pHL . nhe (HLNHE), 36
pinv.exp.power (InvExpPower), 40
pinv.expo.exp.pois (InvEEP), 38
pinv.gen.gpz (InvGenGPZ), 42

INDEX

pinv.pham (InvPham), 44
pinv.pow.cauchy (InvPowerCauchy), 46
pinv.sgz (InvSGZ), 48
pinv.ubd (InvUBD), 49
plind.exp.pow (LindleyExpPower), 53
plind.ginv.exp (LindleyGIE), 55
plindley.chen (LindleyChen), 51
plindley.gpz (LindleyGompertz), 57
plindley.HC (LindleyHC), 59
plindley.inv.exp (LindleyInvExp), 60
plindley.inv.weib (LindleyInvWeibull),
62
plindley.rlh (LindleyRayleigh), 64
plogis.chen (LogisChen), 66
plogis.exp.ext (LogisExpExt), 68
plogis.exp.power (LogisExpPower), 69
plogis.gpz (LogisGompertz), 71
plogis.inv.exp (LogisInvExp), 73
plogis.inv.lomax (LogisInvLomax), 75
plogis.inv.weib (LogisInvWeibull), 77
plogis.lomax (LogisLomax), 79
plogis.mod.exp (LogisModExp), 80
plogis.NHE (LogisNHE), 82
plogis.rayleigh (LogisRayleigh), 84
plogis.weib (LogisWeib), 86
pmod.atan.exp (ModAtanExp), 88
pmod. gen.exp (ModGE), 90
pmod.inv.gen.exp (ModInvGE), 91
pmod. inv.lomax (ModInvLomax), 93
pmod. inv.NHE (ModInvNHE), 95
pmod . ubd (ModUbd), 97
pNLindley.HC (NewLindleyHC), 98
PoisInvWeib, 102
PoissonChen, 104
PoissonExpPower, 106
PoissonGenRayleigh, 107
PoissonGPZ, 109
PoissonInvLomax, 111
PoissonInvNHE, 113
PoissonInvSGZ, 115
PoissonNHE, 117
PoissonSGZ, 119
pp.plot, 120
pperks (Perks), 100
ppois.chen (PoissonChen), 104
ppois.exp.pow (PoissonExpPower), 106
ppois.gen.rayleigh
(PoissonGenRayleigh), 107



INDEX

ppois.gpz (PoissonGPZ), 109
ppois.inv.lomax (PoissonInvLomax), 111
ppois.inv.NHE (PoissonInvNHE), 113
ppois.inv.sgz (PoissonInvSGZ), 115
ppois.inv.weib (PoisInvWeib), 102
ppois.NHE (PoissonNHE), 117
ppois.shifted.gz (PoissonSGZ), 119
print.gofic, 17,122

gchen.exp (ChenExp), 6
gexpo.inv.chen (ExpoInvChen), 11
ggen.exp.power (ExpoExpPower), 9
ggompertz.ext (GompertzExt), 18
ghc.chen (HCChen), 20
ghc.gen.exp (HCGenExp), 22
ghc.gen.rayleigh (HCGenRayleigh), 24
ghc.gpz (HCGompertz), 26
ghc.inv.gpz (HCInvGPZ), 28
ghc.inv.NHE (HCInvNHE), 30
ghc.NHE (HCNHE), 32
gHL.inv.weib (HLIW), 35
gHL . nhe (HLNHE), 36
ginv.exp.power (InvExpPower), 40
ginv.expo.exp.pois (InvEEP), 38
ginv.gen.gpz (InvGenGPZ), 42
ginv.pham (InvPham), 44
ginv.pow.cauchy (InvPowerCauchy), 46
ginv.sgz (InvSGZ), 48
ginv.ubd (InvUBD), 49
glind.exp.pow (LindleyExpPower), 53
glind.ginv.exp (LindleyGIE), 55
glindley.chen (LindleyChen), 51
glindley.gpz (LindleyGompertz), 57
glindley.HC (LindleyHC), 59
glindley.inv.exp (LindleyInvExp), 60
glindley.inv.weib (LindleyInvWeibull),
62
glindley.rlh(LindleyRayleigh), 64
glogis.chen (LogisChen), 66
glogis.exp.ext (LogisExpExt), 68
glogis.exp.power (LogisExpPower), 69
glogis.gpz (LogisGompertz), 71
glogis.inv.exp (LogisInvExp), 73
glogis.inv.lomax (LogisInvLomax), 75
glogis.inv.weib (LogisInvWeibull), 77
glogis.lomax (LogisLomax), 79
glogis.mod.exp (LogisModExp), 80
glogis.NHE (LogisNHE), 82
glogis.rayleigh (LogisRayleigh), 84

137

glogis.weib (LogisWeib), 86
gmod.atan.exp (ModAtanExp), 88
gmod. gen. exp (ModGE), 90
gmod. inv.gen.exp (ModInvGE), 91
gmod. inv.lomax (ModInvLomax), 93
gmod. inv.NHE (ModInvNHE), 95
gmod. ubd (ModUbd), 97
gNLindley.HC (NewLindleyHC), 98
gperks (Perks), 100
gpois.chen (PoissonChen), 104
gpois.exp.pow (PoissonExpPower), 106
gpois.gen.rayleigh
(PoissonGenRayleigh), 107
gpois.gpz (PoissonGPZ), 109
gpois.inv.lomax (PoissonInvLomax), 111
gpois.inv.NHE (PoissonInvNHE), 113
gpois.inv.sgz (PoissonInvSGZ), 115
gpois.inv.weib (PoisInvWeib), 102
gpois.NHE (PoissonNHE), 117
gpois.shifted.gz (PoissonSGZ), 119
qqg.plot, 122

rainfall, 123

rchen.exp (ChenExp), 6

reactorpump, 125

relief, 126

rexpo.inv.chen (ExpoInvChen), 11
rgen.exp.power (ExpoExpPower), 9
rgompertz.ext (GompertzExt), 18
rhc.chen (HCChen), 20

rhc.gen.exp (HCGenExp), 22
rhc.gen.rayleigh (HCGenRayleigh), 24
rhc.gpz (HCGompertz), 26
rhc.inv.gpz (HCInvGPZ), 28
rhc.inv.NHE (HCInvNHE), 30

rhc.NHE (HCNHE), 32

rHL.inv.weib (HLIW), 35

rHL.nhe (HLNHE), 36

rinv.exp.power (InvExpPower), 40
rinv.expo.exp.pois (InvEEP), 38
rinv.gen.gpz (InvGenGPZ), 42
rinv.pham (InvPham), 44
rinv.pow.cauchy (InvPowerCauchy), 46
rinv.sgz (InvSGZ), 48

rinv.ubd (InvUBD), 49

rlind.exp.pow (LindleyExpPower), 53
rlind.ginv.exp (LindleyGIE), 55
rlindley.chen (LindleyChen), 51
rlindley.gpz (LindleyGompertz), 57



138

rlindley.HC (LindleyHC), 59
rlindley.inv.exp (LindleyInvExp), 60
rlindley.inv.weib (LindleyInvWeibull),
62
rlindley.rlh (LindleyRayleigh), 64
rlogis.chen (LogisChen), 66
rlogis.exp.ext (LogisExpExt), 68
rlogis.exp.power (LogisExpPower), 69
rlogis.gpz (LogisGompertz), 71
rlogis.inv.exp (LogisInvExp), 73
rlogis.inv.lomax (LogisInvLomax), 75
rlogis.inv.weib (LogisInvWeibull), 77
rlogis.lomax (LogisLomax), 79
rlogis.mod.exp (LogisModExp), 80
rlogis.NHE (LogisNHE), 82
rlogis.rayleigh (LogisRayleigh), 84
rlogis.weib (LogisWeib), 86
rmod.atan.exp (ModAtanExp), 88
rmod. gen.exp (ModGE), 90
rmod.inv.gen.exp (ModInvGE), 91
rmod. inv.lomax (ModInvLomax), 93
rmod. inv.NHE (ModInvNHE), 95
rmod . ubd (ModUbd), 97
rNLindley.HC (NewLindleyHC), 98
rperks (Perks), 100
rpois.chen (PoissonChen), 104
rpois.exp.pow (PoissonExpPower), 106
rpois.gen.rayleigh
(PoissonGenRayleigh), 107
rpois.gpz (PoissonGPZ), 109
rpois.inv.lomax (PoissonInvLomax), 111
rpois.inv.NHE (PoissonInvNHE), 113
rpois.inv.sgz (PoissonInvSGZ), 115
rpois.inv.weib (PoisInvWeib), 102
rpois.NHE (PoissonNHE), 117
rpois.shifted.gz (PoissonSGZ), 119

stress, 127
stress31, 128
stress66, 129
survtimes, 130

waiting, 131
windshield, 132

INDEX



	NeuDist-package
	bladder
	ChenExp
	conductors
	ExpoExpPower
	ExpoInvChen
	fibers63
	fibers65
	fibers69
	gofic
	GompertzExt
	HCChen
	HCGenExp
	HCGenRayleigh
	HCGompertz
	HCInvGPZ
	HCInvNHE
	HCNHE
	headneck44
	HLIW
	HLNHE
	InvEEP
	InvExpPower
	InvGenGPZ
	InvPham
	InvPowerCauchy
	InvSGZ
	InvUBD
	LindleyChen
	LindleyExpPower
	LindleyGIE
	LindleyGompertz
	LindleyHC
	LindleyInvExp
	LindleyInvWeibull
	LindleyRayleigh
	LogisChen
	LogisExpExt
	LogisExpPower
	LogisGompertz
	LogisInvExp
	LogisInvLomax
	LogisInvWeibull
	LogisLomax
	LogisModExp
	LogisNHE
	LogisRayleigh
	LogisWeib
	ModAtanExp
	ModGE
	ModInvGE
	ModInvLomax
	ModInvNHE
	ModUbd
	NewLindleyHC
	Perks
	PoisInvWeib
	PoissonChen
	PoissonExpPower
	PoissonGenRayleigh
	PoissonGPZ
	PoissonInvLomax
	PoissonInvNHE
	PoissonInvSGZ
	PoissonNHE
	PoissonSGZ
	pp.plot
	print.gofic
	qq.plot
	rainfall
	reactorpump
	relief
	stress
	stress31
	stress66
	survtimes
	waiting
	windshield
	Index

