Effortless multicollinearity management in data frames with both numeric and categorical variables for statistical and machine learning applications. The package simplifies multicollinearity analysis by combining four robust methods: 1) target encoding for categorical variables (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); 2) automated feature prioritization to prevent key variable loss during filtering; 3) pairwise correlation for all variable combinations (numeric-numeric, numeric-categorical, categorical-categorical); and 4) fast computation of variance inflation factors.
| Version: | 2.0.0 |
| Depends: | R (≥ 4.0) |
| Imports: | progressr, future.apply, mgcv, rpart, ranger |
| Suggests: | future, testthat (≥ 3.0.0), spelling |
| Published: | 2024-11-08 |
| DOI: | 10.32614/CRAN.package.collinear |
| Author: | Blas M. Benito |
| Maintainer: | Blas M. Benito <blasbenito at gmail.com> |
| BugReports: | https://github.com/blasbenito/collinear/issues |
| License: | MIT + file LICENSE |
| URL: | https://blasbenito.github.io/collinear/ |
| NeedsCompilation: | no |
| Language: | en-US |
| Citation: | collinear citation info |
| Materials: | README, NEWS |
| CRAN checks: | collinear results |
| Reference manual: | collinear.html , collinear.pdf |
| Package source: | collinear_2.0.0.tar.gz |
| Windows binaries: | r-devel: collinear_2.0.0.zip, r-release: collinear_2.0.0.zip, r-oldrel: collinear_2.0.0.zip |
| macOS binaries: | r-release (arm64): collinear_2.0.0.tgz, r-oldrel (arm64): collinear_2.0.0.tgz, r-release (x86_64): collinear_2.0.0.tgz, r-oldrel (x86_64): collinear_2.0.0.tgz |
| Old sources: | collinear archive |
| Reverse imports: | ecotrends |
Please use the canonical form https://CRAN.R-project.org/package=collinear to link to this page.