| Type: | Package |
| Title: | Experimental Design and Analysis for Tree Improvement |
| Version: | 1.1.0 |
| Maintainer: | Muhammad Yaseen <myaseen208@gmail.com> |
| Description: | Provides data sets and R Codes for E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement, CSIRO Publishing. |
| Depends: | R (≥ 4.1.0) |
| Imports: | car, dae, dplyr, emmeans, ggplot2, lmerTest, magrittr, predictmeans, stats, supernova |
| License: | GPL-3 |
| URL: | https://github.com/MYaseen208/eda4treeR https://CRAN.R-project.org/package=eda4treeR https://myaseen208.com/eda4treeR/ https://myaseen208.com/EDATR/ |
| BugReports: | https://github.com/myaseen208/eda4treeR/issues |
| LazyData: | TRUE |
| RoxygenNote: | 7.3.2 |
| Encoding: | UTF-8 |
| Suggests: | testthat |
| Note: | 1. Asian Development Bank (ADB), Islamabad, Pakistan. 2. Benazir Income Support Programme (BISP), Islamabad, Pakistan. 3. Department of Mathematics and Statistics, University of Agriculture Faisalabad, Pakistan. |
| NeedsCompilation: | no |
| Packaged: | 2024-09-13 21:21:45 UTC; myaseen208 |
| Author: | Muhammad Yaseen |
| Repository: | CRAN |
| Date/Publication: | 2024-09-13 21:50:02 UTC |
Data for Example 2.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam2.1 is used to compare two seed lots by using single factor ANOVA.
Usage
data(DataExam2.1)
Format
A data.frame with 16 rows and 2 variables.
seedlotTwo Seedlots Seed Orchad (SO) and routin plantation (P)
dbhDiameter at breast height
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam2.1)
Data for Example 2.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam2.2 is used to compare two seed lots by using ANOVA under RCB Design.
Usage
data(DataExam2.2)
Format
A data.frame with 16 rows and 2 variables.
replrepl
blockblock
SeedlotTwo Seedlots Seed Orchad (SO) and routin plantation (P)
dbhDiameter at breast height
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam2.2)
Data for Example 3.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam3.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Usage
data(DataExam3.1)
Format
A data.frame with 80 rows and 6 variables.
replReplication number of different Seedlots
PlotNoPlot No of differnt Trees
seedlotSeed Lot number
TreeNoTree number of Seedlots
htHeight in meter
dglDiameter at ground level
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam3.1)
Data for Example 3.1.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam3.1.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Usage
data(DataExam3.1.1)
Format
A data.frame with 10 rows and 6 variables.
replReplication number of different Seedlots
PlotNoPlot No of differnt Trees
seedlotSeed Lot number
TreeNoTree number of Seedlots
htHeight in meter
VarVar
TreeCountTreeCount
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam3.1.1)
Data for Example 4.3 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.3 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Usage
data(DataExam4.3)
Format
A data.frame with 72 rows and 8 variables.
repReplication number of Treatment
rowRow number of different Seedlots
columnColumn number of differnt Trees
seedlotSeed lot number
treatTreatment types
countNumber of germinated seeds out of 25
percentGermination Percentage
contcompControl or Trated Plot
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam4.3)
Data for Example 4.3.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.3.1 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Usage
data(DataExam4.3.1)
Format
A data.frame with 72 rows and 8 variables.
RowRow number of different Seedlots
ColumnColumn number of differnt Trees
ReplicationReplication number of Treatment
ContcompControl or Trated Plot
PretreatmentTreatment types
SeedLotSeed lot number
GerminationCountNumber of germinated seeds out of 25
PercentGermination Percentage
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam4.3.1)
Data for Example 4.4 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.4 presents the height means for 4 seedlots under factorial arrangement for two levels of Fertilizer and two levels of Irrigation.
Usage
data(DataExam4.4)
Format
A data.frame with 32 rows and 5 variables.
replReplication number
irrigIrrigation type
fertFertilizer type
seedlotSeed Lot number
heightHeight of the plants
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam4.4)
Data for Example 5.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam5.1 presents the height of 27 seedlots from 4 sites.
Usage
data(DataExam5.1)
Format
A data.frame with 108 rows and 4 variables.
siteSites for the experiment
seedlotSeed lot number
htHeight of the plants
sitemeanMean Height of Each Site
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam5.1)
Data for Example 5.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam5.2 presents the height of 37 seedlots from 6 sites.
Usage
data(DataExam5.2)
Format
A data.frame with 108 rows and 4 variables.
siteSites for the experiment
seedlotSeed lot number
htHeight of the plants
sitemeanMean Height of Each Site
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam5.2)
Data for Example 6.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam 6.2 Dbh mean, Dbh varince and number of trees per plot from 3 provinces("PNG","Sabah","Queensland") with 4 replicationsof 48 families.
Usage
data(DataExam6.2)
Format
A data.frame with 192 rows and 7 variables.
ReplicationReplication number of different Families
Plot.numberPlot number of differnt Trees
FamilyFamily Numuber
ProvinceProvince of family
Dbh.meanAverage Diameter at breast height of trees within plot
Dbh.varianceVariance of Diameter at breast height of trees within plot
Dbh.countNumber of trees within plot
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
Examples
data(DataExam6.2)
Data for Example 8.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam8.1 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Usage
data(DataExam8.1)
Format
A data.frame with 236 rows and 8 variables.
replThere are 4 replication for the design
rowExperiment is conducted under 6 rows
\
colExperiment is conducted under 4 columns
inocSeedling were inoculated for 2 different time periods half for one week and half for seven weeks
provprovenance
CountryData for different seedlots was collected from 18 countries
DbhDiameter at breast height
Country.1Recoded Country lables
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam8.1)
Data for Example 8.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam8.2 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Usage
data(DataExam8.2)
Format
A data.frame with 236 rows and 8 variables.
replThere are 4 replication for the design
rowExperiment is conducted under 6 rows
\
columnExperiment is conducted under 4 columns
clonenumClonenum
contcompfContcompf
standardStandard
cloneClone
dbhdbhmean
dbhvardbhvariance
hthtmean
htvarhtvariance
countcount
contcompvContcompv
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
data(DataExam8.2)
Example 2.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam2.1 is used to compare two seed lots by using single factor ANOVA.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam2.1)
# Pg. 22
fmtab2.3 <- lm(formula = dbh ~ seedlot, data = DataExam2.1)
# Pg. 23
anova(fmtab2.3)
# Pg. 23
emmeans(object = fmtab2.3, specs = ~ seedlot)
emmip(object = fmtab2.3, formula = ~ seedlot) +
theme_classic()
Example 2.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam2.2 is used to compare two seed lots by using ANOVA under RCB Design.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam2.2)
# Pg. 24
fmtab2.5 <-
lm(
formula = dbh ~ block + seedlot
, data = DataExam2.2
)
# Pg. 26
anova(fmtab2.5)
# Pg. 26
emmeans(object = fmtab2.5, specs = ~ seedlot)
emmip(object = fmtab2.5, formula = ~ seedlot) +
theme_classic()
Data for Example 3.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam3.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
library(supernova)
data(DataExam3.1)
# Pg. 28
fmtab3.3 <-
lm(
formula = ht ~ repl*seedlot
, data = DataExam3.1
)
fmtab3.3ANOVA1 <-
anova(fmtab3.3) %>%
mutate(
"F value" =
c(
anova(fmtab3.3)[1:2, 3]/anova(fmtab3.3)[3, 3]
, anova(fmtab3.3)[3, 4]
, NA
)
)
# Pg. 33 (Table 3.3)
fmtab3.3ANOVA1 %>%
mutate(
"Pr(>F)" =
c(
NA
, pf(
q = fmtab3.3ANOVA1[2, 4]
, df1 = fmtab3.3ANOVA1[2, 1]
, df2 = fmtab3.3ANOVA1[3, 1], lower.tail = FALSE
)
, NA
, NA
)
)
# Pg. 33 (Table 3.3)
emmeans(object = fmtab3.3, specs = ~ seedlot)
# Pg. 34 (Figure 3.2)
ggplot(
mapping = aes(
x = fitted.values(fmtab3.3)
, y = residuals(fmtab3.3)
)
) +
geom_point(size = 2) +
labs(
x = "Fitted Values"
, y = "Residual"
) +
theme_classic()
# Pg. 33 (Table 3.4)
DataExam3.1m <- DataExam3.1
DataExam3.1m[c(28, 51, 76), 5] <- NA
DataExam3.1m[c(28, 51, 76), 6] <- NA
fmtab3.4 <-
lm(
formula = ht ~ repl*seedlot
, data = DataExam3.1m
)
fmtab3.4ANOVA1 <-
anova(fmtab3.4) %>%
mutate(
"F value" =
c(
anova(fmtab3.4)[1:2, 3]/anova(fmtab3.4)[3, 3]
, anova(fmtab3.4)[3, 4]
, NA
)
)
# Pg. 33 (Table 3.4)
fmtab3.4ANOVA1 %>%
mutate(
"Pr(>F)" =
c(
NA
, pf(
q = fmtab3.4ANOVA1[2, 4]
, df1 = fmtab3.4ANOVA1[2, 1]
, df2 = fmtab3.4ANOVA1[3, 1], lower.tail = FALSE
)
, NA
, NA
)
)
# Pg. 33 (Table 3.4)
emmeans(object = fmtab3.4, specs = ~ seedlot)
Example 3.1.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam3.1.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam3.1.1)
# Pg. 36
fm3.8 <-
lm(
formula = ht ~ repl + seedlot
, data = DataExam3.1.1
)
# Pg. 40
anova(fm3.8)
# Pg. 40
emmeans(object = fm3.8, specs = ~seedlot)
emmip(object = fm3.8, formula = ~seedlot) +
theme_classic()
Example 4.3 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.3 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam4.3)
# Pg. 50
fm4.2 <-
aov(
formula =
percent ~ repl + contcomp + seedlot +
treat/contcomp + contcomp/seedlot +
treat/contcomp/seedlot
, data = DataExam4.3
)
# Pg. 54
anova(fm4.2)
# Pg. 54
model.tables(x = fm4.2, type = "means")
emmeans(object = fm4.2, specs = ~ contcomp)
emmeans(object = fm4.2, specs = ~ seedlot)
emmeans(object = fm4.2, specs = ~ contcomp + treat)
emmeans(object = fm4.2, specs = ~ contcomp + seedlot)
emmeans(object = fm4.2, specs = ~ contcomp + treat + seedlot)
DataExam4.3 %>%
dplyr::group_by(treat, contcomp, seedlot) %>%
dplyr::summarize(Mean = mean(percent))
RESFIT <-
data.frame(
residualvalue = residuals(fm4.2)
, fittedvalue = fitted.values(fm4.2)
)
ggplot(mapping = aes(
x = fitted.values(fm4.2)
, y = residuals(fm4.2))) +
geom_point(size = 2) +
labs(
x = "Fitted Values"
, y = "Residuals"
) +
theme_classic()
Example 4.3.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.3.1 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam4.3)
# Pg. 57
fm4.4 <-
aov(
formula = percent ~ repl + treat*seedlot
, data = DataExam4.3 %>%
filter(treat != "control")
)
# Pg. 57
anova(fm4.4)
model.tables(x = fm4.4, type = "means", se = TRUE)
emmeans(object = fm4.4, specs = ~ treat)
emmeans(object = fm4.4, specs = ~ seedlot)
emmeans(object = fm4.4, specs = ~ treat * seedlot)
Example 4.4 from Experimental Design and Analysis for Tree Improvement
Description
Exam4.4 presents the height means for 4 seedlots under factorial arrangement for two levels of Fertilizer and two levels of Irrigation.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam4.4)
# Pg. 58
fm4.6 <-
aov(
formula = height ~ repl + irrig*fert*seedlot +
Error(repl/irrig:fert)
, data = DataExam4.4
)
# Pg. 61
summary(fm4.6)
# Pg. 61
model.tables(x = fm4.6, type = "means")
# Pg. 61
emmeans(object = fm4.6, specs = ~ irrig)
emmip(object = fm4.6, formula = ~ irrig) +
theme_classic()
Example 5.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam5.1 presents the height of 27 seedlots from 4 sites.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam5.1)
# Pg.68
fm5.4 <-
lm(
formula = ht ~ site*seedlot
, data = DataExam5.1
)
# Pg. 73
anova(fm5.4)
# Pg. 73
emmeans(object = fm5.4, specs = ~ site)
emmeans(object = fm5.4, specs = ~ seedlot)
ANOVAfm5.4 <- anova(fm5.4)
ANOVAfm5.4[4, 1:3] <- c(208, 208*1040, 1040)
ANOVAfm5.4[3, 4] <- ANOVAfm5.4[3, 3]/ANOVAfm5.4[4, 3]
ANOVAfm5.4[3, 5] <-
pf(
q = ANOVAfm5.4[3, 4]
, df1 = ANOVAfm5.4[3, 1]
, df2 = ANOVAfm5.4[4, 1]
, lower.tail = FALSE
)
# Pg. 73
ANOVAfm5.4
# Pg. 80
DataExam5.1 %>%
filter(seedlot %in% c("13653", "13871")) %>%
ggplot(
data = .
, mapping = aes(
x = sitemean
, y = ht
, color = seedlot
, shape = seedlot
)
) +
geom_point() +
geom_smooth(
method = lm
, se = FALSE
, fullrange = TRUE
) +
theme_classic() +
labs(
x = "SiteMean"
, y = "SeedLot Mean"
)
Tab5.10 <-
DataExam5.1 %>%
summarise(Mean = mean(ht), .by = seedlot) %>%
left_join(
DataExam5.1 %>%
nest_by(seedlot) %>%
mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>%
summarise(Slope = coef(fm1)[2])
, by = "seedlot"
)
# Pg. 81
Tab5.10
ggplot(data = Tab5.10, mapping = aes(x = Mean, y = Slope)) +
geom_point(size = 2) +
theme_bw() +
labs(
x = "SeedLot Mean"
, y = "Regression Coefficient"
)
DevSS1 <-
DataExam5.1 %>%
nest_by(seedlot) %>%
mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>%
summarise(SSE = anova(fm1)[2, 2]) %>%
ungroup() %>%
summarise(Dev = sum(SSE)) %>%
as.numeric()
ANOVAfm5.4[2, 2]
length(levels(DataExam5.1$SeedLot))
ANOVAfm5.4.1 <-
rbind(
ANOVAfm5.4[1:3, ]
, c(
ANOVAfm5.4[2, 1]
, ANOVAfm5.4[3, 2] - DevSS1
, (ANOVAfm5.4[3, 2] - DevSS1)/ANOVAfm5.4[2, 1]
, NA
, NA
)
, c(
ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1]
, DevSS1
, DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])
, DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3]
, pf(
q = DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3]
, df1 = ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1]
, df2 = ANOVAfm5.4[4, 1]
, lower.tail = FALSE
)
)
, ANOVAfm5.4[4, ]
)
rownames(ANOVAfm5.4.1) <-
c(
"Site"
, "seedlot"
, "site:seedlot"
, " regressions"
, " deviations"
, "Residuals"
)
# Pg. 82
ANOVAfm5.4.1
Example 5.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam5.2 presents the height of 37 seedlots from 6 sites.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam5.2)
# Pg. 75
fm5.7 <-
lm(
formula = ht ~ site*seedlot
, data = DataExam5.2
)
# Pg. 77
anova(fm5.7)
fm5.9 <-
lm(
formula = ht ~ site*seedlot
, data = DataExam5.2
)
# Pg. 77
anova(fm5.9)
ANOVAfm5.9 <- anova(fm5.9)
ANOVAfm5.9[4, 1:3] <- c(384, 384*964, 964)
ANOVAfm5.9[3, 4] <- ANOVAfm5.9[3, 3]/ANOVAfm5.9[4, 3]
ANOVAfm5.9[3, 5] <-
pf(
q = ANOVAfm5.9[3, 4]
, df1 = ANOVAfm5.9[3, 1]
, df2 = ANOVAfm5.9[4, 1]
, lower.tail = FALSE
)
# Pg. 77
ANOVAfm5.9
Tab5.14 <-
DataExam5.2 %>%
summarise(
Mean = round(mean(ht, na.rm = TRUE), 0)
, .by = seedlot
) %>%
left_join(
DataExam5.2 %>%
nest_by(seedlot) %>%
mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>%
summarise(Slope = round(coef(fm2)[2], 2))
, by = "seedlot"
) %>%
as.data.frame()
# Pg. 81
Tab5.14
DevSS2 <-
DataExam5.2 %>%
nest_by(seedlot) %>%
mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>%
summarise(SSE = anova(fm2)[2, 2]) %>%
ungroup() %>%
summarise(Dev = sum(SSE)) %>%
as.numeric()
ANOVAfm5.9.1 <-
rbind(
ANOVAfm5.9[1:3, ]
, c(
ANOVAfm5.9[2, 1]
, ANOVAfm5.9[3, 2] - DevSS2
, (ANOVAfm5.9[3, 2] - DevSS2)/ANOVAfm5.9[2, 1]
, NA
, NA
)
, c(
ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1]
, DevSS2
, DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])
, DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3]
, pf(
q = DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3]
, df1 = ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1]
, df2 = ANOVAfm5.9[4, 1]
, lower.tail = FALSE
)
)
, ANOVAfm5.9[4, ]
)
rownames(ANOVAfm5.9.1) <-
c(
"site"
, "seedlot"
, "site:seedlot"
, " regressions"
, " deviations"
, "Residuals"
)
# Pg. 82
ANOVAfm5.9.1
Code <-
c(
"a","a","a","a","b","b","b","b"
, "c","d","d","d","d","e","f","g"
, "h","h","i","i","j","k","l","m"
,"n","n","n","o","p","p","q","r"
, "s","t","t","u","v"
)
Tab5.14$Code <- Code
ggplot(
data = Tab5.14
, mapping = aes(x = Mean, y = Slope)
) +
geom_point(size = 2) +
geom_text(
mapping = aes(label = Code)
, hjust = -0.5
, vjust = -0.5
) +
theme_bw() +
labs(
x = "SeedLot Mean"
, y = "Regression Coefficient"
)
Example 6.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam 6.2 Dbh mean, Dbh varince and number of trees per plot from 3 provinces("PNG","Sabah","Queensland") with 4 replications of 48 families.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam6.2)
DataExam6.2.1 <-
DataExam6.2 %>%
filter(Province == "PNG")
# Pg. 94
fm6.3 <-
lm(
formula = Dbh.mean ~ Replication + Family
, data = DataExam6.2.1
)
b <- anova(fm6.3)
HM <- function(x){length(x)/sum(1/x)}
w <- HM(DataExam6.2.1$Dbh.count)
S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])]
Sigma2t <- mean(DataExam6.2.1$Dbh.variance)
sigma2m <- S2-(Sigma2t/w)
fm6.3.1 <-
lmer(
formula = Dbh.mean ~ 1 + Replication + (1|Family)
, data = DataExam6.2.1
, REML = TRUE
)
# Pg. 104
# summary(fm6.3.1)
varcomp(fm6.3.1)
sigma2f <- 0.2584
h2 <- (sigma2f/(0.3))/(Sigma2t + sigma2m + sigma2f)
cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2)
fm6.4 <-
lm(
formula = Dbh.mean ~ Replication+Family
, data = DataExam6.2
)
b <- anova(fm6.4)
HM <- function(x){length(x)/sum(1/x)}
w <- HM(DataExam6.2$Dbh.count)
S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])]
Sigma2t <- mean(DataExam6.2$Dbh.variance)
sigma2m <- S2-(Sigma2t/w)
fm6.4.1 <-
lmer(
formula = Dbh.mean ~ 1 + Replication + Province + (1|Family)
, data = DataExam6.2
, REML = TRUE
)
# Pg. 107
varcomp(fm6.4.1)
sigma2f <- 0.3514
h2 <- (sigma2f/(0.3))/(Sigma2t+sigma2m+sigma2f)
cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2)
fm6.7.1 <-
lmer(
formula = Dbh.mean ~ 1+Replication+(1|Family)
, data = DataExam6.2.1
, REML = TRUE
)
# Pg. 116
varcomp(fm6.7.1)
sigma2f[1] <- 0.2584
fm6.7.2<-
lmer(
formula = Ht.mean ~ 1 + Replication + (1|Family)
, data = DataExam6.2.1
, REML = TRUE
)
# Pg. 116
varcomp(fm6.7.2)
sigma2f[2] <- 0.2711
fm6.7.3 <-
lmer(
formula = Sum.means ~ 1 + Replication + (1|Family)
, data = DataExam6.2.1
, REML = TRUE
, control = lmerControl()
)
# Pg. 116
varcomp(fm6.7.3)
sigma2f[3] <- 0.873
sigma2xy <- 0.5*(sigma2f[3]-sigma2f[1]-sigma2f[2])
GenCorr <- sigma2xy/sqrt(sigma2f[1]*sigma2f[2])
cbind(
S2x = sigma2f[1]
, S2y = sigma2f[2]
, S2.x.plus.y = sigma2f[3]
, GenCorr
)
Example 8.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam8.1 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam8.1)
# Pg. 141
fm8.4 <-
aov(
formula = dbh ~ inoc + Error(repl/inoc) +
inoc*country*prov
, data = DataExam8.1
)
# Pg. 150
summary(fm8.4)
# Pg. 150
model.tables(x = fm8.4, type = "means")
RESFit <-
data.frame(
fittedvalue = fitted.aovlist(fm8.4)
, residualvalue = proj(fm8.4)$Within[,"Residuals"]
)
ggplot(
data = RESFit
, mapping = aes(x = fittedvalue, y = residualvalue)
) +
geom_point(size = 2) +
labs(
x = "Residuals vs Fitted Values"
, y = ""
) +
theme_bw()
# Pg. 153
fm8.6 <-
aov(
formula = terms(
dbh ~ inoc + repl + col +
repl:row + repl:col +
prov + inoc:prov
, keep.order = TRUE
)
, data = DataExam8.1
)
summary(fm8.6)
Example 8.1.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam8.1.1 presents the Mixed Effects Analysis of Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries given in Example 8.1.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam8.1)
# Pg. 155
fm8.8 <-
lmerTest::lmer(
formula = dbh ~ 1 + repl + col + prov +
(1|repl:row) + (1|repl:col)
, data = DataExam8.1
, REML = TRUE
)
# Pg. 157
## Not run:
varcomp(fm8.8)
## End(Not run)
anova(fm8.8)
anova(fm8.8, ddf = "Kenward-Roger")
predictmeans(model = fm8.8, modelterm = "repl")
predictmeans(model = fm8.8, modelterm = "col")
predictmeans(model = fm8.8, modelterm = "prov")
# Pg. 161
RCB1 <-
aov(dbh ~ prov + repl, data = DataExam8.1)
RCB <-
emmeans(RCB1, specs = "prov") %>%
as_tibble()
Mixed <-
emmeans(fm8.8, specs = "prov") %>%
as_tibble()
table8.9 <-
left_join(
x = RCB
, y = Mixed
, by = "prov"
, suffix = c(".RCBD", ".Mixed")
)
print(table8.9)
Example 8.1.2 from Experimental Design & Analysis for Tree Improvement
Description
Exam8.1.2 presents the Analysis of Nested Seedlot Structure of Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries given in Example 8.1.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam8.1)
# Pg. 167
fm8.11 <-
aov(
formula = dbh ~ country + country:prov
, data = DataExam8.1
)
b <- anova(fm8.11)
Res <- length(b[["Sum Sq"]])
df <- 119
MSS <- 0.1951
b[["Df"]][Res] <- df
b[["Sum Sq"]][Res] <- MSS*df
b[["Mean Sq"]][Res] <- b[["Sum Sq"]][Res]/b[["Df"]][Res]
b[["F value"]][1:Res-1] <-
b[["Mean Sq"]][1:Res-1]/b[["Mean Sq"]][Res]
b[["Pr(>F)"]][Res-1] <-
df(
b[["F value"]][Res-1]
, b[["Df"]][Res-1]
, b[["Df"]][Res]
)
b
emmeans(fm8.11, specs = "country")
Example 8.2 from Experimental Design and Analysis for Tree Improvement
Description
Exam8.2 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
data(DataExam8.2)
# Pg.
fm8.2 <-
lmerTest::lmer(
formula = dbh ~ repl + column +
contcompf + contcompf:standard +
(1|repl:row) + (1|repl:column) +
(1|contcompv:clone)
, data = DataExam8.2
)
## Not run:
varcomp(fm8.2)
## End(Not run)
anova(fm8.2)
Anova(fm8.2, type = "II", test.statistic = "Chisq")
predictmeans(model = fm8.2, modelterm = "repl")
predictmeans(model = fm8.2, modelterm = "column")
emmeans(object = fm8.2, specs = ~contcompf|standard)