
Package ‘wizaRdry’
February 4, 2026

Title A Magical Framework for Collaborative & Reproducible Data
Analysis

Version 0.6.4

Description A comprehensive data analysis framework for NIH-funded research that stream-
lines workflows for both data cleaning and preparing NIH Data Archive ('NDA') submission tem-
plates. Provides unified access to multiple data sources ('REDCap', 'Mon-
goDB', 'Qualtrics') through interfaces to their APIs, with specialized functions for data clean-
ing, filtering, merging, and parsing. Features automatic validation, field harmoniza-
tion, and memory-aware processing to enhance reproducibility in multi-site collaborative re-
search as described in Mittal et al. (2021) <doi:10.20900/jpbs.20210011>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports beepr, cli, config, dplyr, future, future.apply, haven, httr,
jsonlite, knitr, mongolite, parallel, qualtRics, REDCapR,
rlang, stringdist, testthat, rstudioapi, lubridate, DBI,
RMariaDB, odbc, R6, openxlsx, openxlsx2

Depends R (>= 4.1.0)

URL https://github.com/belieflab/wizaRdry

BugReports https://github.com/belieflab/wizaRdry/issues

Suggests rmarkdown, yaml

NeedsCompilation no

Author Joshua G. Kenney [aut, cre],
Trevor F. Williams [aut],
Minerva K. Pappu [aut],
Michael J. Spilka [aut],
Danielle N. Pratt [ctb],
Victor J. Pokorny [ctb],
Santiago Castiello de Obeso [ctb],
Praveen Suthaharan [ctb],
Christian R. Horgan [ctb]

Maintainer Joshua G. Kenney <joshua.kenney@yale.edu>

1

https://doi.org/10.20900/jpbs.20210011
https://github.com/belieflab/wizaRdry
https://github.com/belieflab/wizaRdry/issues

2 Contents

Repository CRAN

Date/Publication 2026-02-03 23:00:02 UTC

Contents
clean . 3
createCsv . 4
createRds . 4
createSpss . 5
dataFilter . 6
dataMerge . 6
dataRequest . 7
getRedcap . 8
getSurvey . 8
getTask . 9
meld . 10
mongo . 11
mongo.index . 12
mongo.rune . 13
nda . 14
ndaRequest . 15
oracle . 16
oracle.desc . 17
oracle.index . 18
oracle.query . 18
oracle.test . 19
qualtrics . 20
qualtrics.dict . 21
qualtrics.index . 21
qualtrics.rune . 22
redcap . 23
redcap.dict . 24
redcap.index . 25
redcap.rune . 25
rune . 27
scry . 28
sift . 30
sql . 33
sql.desc . 35
sql.index . 35
sql.query . 36
to.csv . 36
to.nda . 37
to.rds . 40
to.sav . 41
wizaRdry-deprecated . 42

Index 44

clean 3

clean Generate clean data frames from cleaning scripts created in the ./clean
directory

Description

This function processes requests for clean data sequentially for specified measures. It makes a
request to the appropriate API for the named measure or measures and runs the associated data
cleaning routines. It then runs a series of unit tests to verify that the data quality standards are met.

Usage

clean(..., csv = FALSE, rdata = FALSE, spss = FALSE, skip_prompt = TRUE)

Arguments

... Strings, specifying the measures to process, which can be a Mongo collection,
REDCap instrument, or Qualtrics survey.

csv Optional; Boolean, if TRUE creates a .csv extract in ./tmp.

rdata Optional; Boolean, if TRUE creates an .rdata extract in ./tmp.

spss Optional; Boolean, if TRUE creates a .sav extract in ./tmp.

skip_prompt Logical. If TRUE (default), skips confirmation prompts. If FALSE, prompts
for confirmation unless the user has previously chosen to remember their pref-
erence.

Value

Prints the time taken for the data request process.

Author(s)

Joshua Kenney joshua.kenney@yale.edu

Examples

Not run:
clean("prl", csv=TRUE)
clean("rgpts", "kamin", rdata=TRUE)

Skip confirmation prompts
clean("prl", csv=TRUE, skip_prompt=TRUE)

End(Not run)

mailto:joshua.kenney@yale.edu

4 createRds

createCsv Alias for ’to.csv’ (DEPRECATED)

Description

This function is deprecated. Please use ’to.csv’ instead. This is a legacy alias for the ’to.csv’
function to maintain compatibility with older code.

Usage

createCsv(...)

Arguments

... Additional arguments passed through to to.csv().

Value

Invisible TRUE if successful. The function writes a CSV file to the specified path and prints a
message indicating the file’s location.

Examples

Not run:
DEPRECATED - use to.csv() instead
createCsv(prl01)

End(Not run)

createRds Alias for ’to.rds’ (DEPRECATED)

Description

This function is deprecated. Please use ’to.rds’ instead. This is a legacy alias for the ’to.rds’ function
to maintain compatibility with older code.

Usage

createRds(...)

Arguments

... Additional arguments passed through to to.rds().

createSpss 5

Value

Invisible TRUE if successful. The function writes an RDS file to the specified path and prints a
message indicating the file’s location.

Examples

Not run:
DEPRECATED - use to.rds() instead
createRds(prl01)

End(Not run)

createSpss Alias for ’to.sav’ (DEPRECATED)

Description

This function is deprecated. Please use ’to.sav’ instead. This is a legacy alias for the ’to.sav’
function to maintain compatibility with older code.

Usage

createSpss(...)

Arguments

... Additional arguments passed through to to.sav().

Value

Invisible TRUE if successful. Writes an SPSS file to the designated path and prints a message
indicating the file’s location.

Examples

Not run:
DEPRECATED - use to.sav() instead
createSpss(prl01)

End(Not run)

6 dataMerge

dataFilter Alias for ’sift’ (DEPRECATED)

Description

This function is deprecated. Please use ’sift’ instead. This is a legacy alias for the ’sift’ function to
maintain compatibility with older code.

Usage

dataFilter(...)

Arguments

... Additional arguments passed through to sift().

Value

A filtered dataframe based on the provided parameters, and containing only the columns specified
in ’cols’. If no columns are specified, returns the entire dataframe with applied row filters.

Examples

Not run:
DEPRECATED - use sift() instead
filtered <- dataFilter(df, sex="F")

End(Not run)

dataMerge Alias for ’meld’ (DEPRECATED)

Description

This function is deprecated. Please use ’meld’ instead. This is a legacy alias for the ’meld’ function
to maintain compatibility with older code.

Usage

dataMerge(...)

Arguments

... Clean data frames to be merged.

dataRequest 7

Value

A merged data frame based on the specified or common candidate keys.

Examples

Not run:
DEPRECATED - use meld() instead
merged <- dataMerge(df1_clean, df2_clean)

End(Not run)

dataRequest Alias for ’clean’ (DEPRECATED)

Description

This function is deprecated. Please use ’clean’ instead. This is a legacy alias for the ’clean’ function
to maintain compatibility with older code.

Usage

dataRequest(...)

Arguments

... Strings, specifying the measures to process, which can be a Mongo collection,
REDCap instrument, or Qualtrics survey.

Value

Prints the time taken for the data request process.

Examples

Not run:
DEPRECATED - use clean() instead
prl <- dataRequest("prl")

End(Not run)

8 getSurvey

getRedcap Alias for ’redcap’ (DEPRECATED)

Description

This function is deprecated. Please use ’redcap’ instead. This is a legacy alias for the ’redcap’
function to maintain compatibility with older code.

Usage

getRedcap(...)

Arguments

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

Value

A data frame containing the requested REDCap data

Examples

Not run:
DEPRECATED - use redcap() instead
survey_data <- getRedcap("demographics")

End(Not run)

getSurvey Alias for ’qualtrics’ (DEPRECATED)

Description

This function is deprecated. Please use ’qualtrics’ instead. This is a legacy alias for the ’qualtrics’
function to maintain compatibility with older code.

Usage

getSurvey(...)

Arguments

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

getTask 9

Value

A cleaned and harmonized data frame containing the survey data with superkeys first.

Examples

Not run:
DEPRECATED - use qualtrics() instead
survey_data <- getSurvey("your_survey_alias")

End(Not run)

getTask Alias for ’mongo’ (DEPRECATED)

Description

This function is deprecated. Please use ’mongo’ instead. This is a legacy alias for the ’mongo’
function to maintain compatibility with older code.

Usage

getTask(...)

Arguments

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

Value

A data frame containing the MongoDB data with superkeys first

Examples

Not run:
DEPRECATED - use mongo() instead
survey_data <- getTask("task_alias")

End(Not run)

10 meld

meld Merge two or more data frames magically according to their candidate
key

Description

This function simplifies the process of merging multiple cleaned data frames by automatically de-
termining common merge keys or utilizing user-specified keys. Supports both inner and outer join
methods, and offers options for exporting the merged data.

Usage

meld(
...,
by = NULL,
all = TRUE,
no.dups = FALSE,
csv = FALSE,
rdata = FALSE,
spss = FALSE

)

Arguments

... Clean data frames to be merged.

by A vector of strings specifying the column names to be used as merge keys. If
NULL, the function automatically determines common keys from the provided
data frames.

all Logical; if TRUE, performs an OUTER JOIN. If FALSE, performs an INNER
JOIN.

no.dups Logical; if TRUE, duplicates are removed post-merge.

csv Logical; if TRUE, the merged data frame is exported as a CSV file.

rdata Logical; if TRUE, the merged data frame is saved as an Rda file.

spss Logical; if TRUE, the merged data frame is exported as an SPSS file.

Value

A merged data frame based on the specified or common candidate keys.

Author(s)

Joshua Kenney joshua.kenney@yale.edu

mailto:joshua.kenney@yale.edu

mongo 11

Examples

Not run:
Create sample dataframes for demonstration
df1 <- data.frame(

src_subject_id = c("S001", "S002", "S003"),
visit = c(1, 2, 1),
measure1 = c(10, 15, 12),
stringsAsFactors = FALSE

)

df2 <- data.frame(
src_subject_id = c("S001", "S002", "S004"),
visit = c(1, 2, 2),
measure2 = c(85, 92, 78),
stringsAsFactors = FALSE

)

Perform an OUTER JOIN using default keys:
merged1 <- meld(df1, df2, all = TRUE)

Perform an INNER JOIN using specified keys:
merged2 <- meld(df1, df2, by = "src_subject_id", all = FALSE)

End(Not run)

mongo Fetch data from MongoDB to be stored in a data frame - UPDATED
VERSION

Description

Fetch data from MongoDB to be stored in a data frame - UPDATED VERSION

Usage

mongo(
collection,
...,
database = NULL,
identifier = NULL,
chunk_size = NULL,
verbose = FALSE,
interview_date = NULL

)

Arguments

collection The name of the MongoDB collection

12 mongo.index

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

database The database name (optional)

identifier Field to use as identifier (optional)

chunk_size Number of records per chunk (optional)

verbose Logical; if TRUE, displays detailed progress messages. Default is FALSE.

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

Value

A data frame containing the MongoDB data with superkeys first

Examples

Not run:
Get data from MongoDB collection
data <- mongo("collection")

End(Not run)

mongo.index Display table of available MongoDB collections

Description

Retrieves a list of all available collections in the configured MongoDB database.

Usage

mongo.index(database = NULL)

Arguments

database Optional; the name of the database to connect to. If NULL, uses the database
specified in the configuration file.

Value

A character vector containing the names of all available collections in the configured MongoDB
database.

mongo.rune 13

mongo.rune Parse composite MongoDB collection into component data frames by
variable prefix

Description

This function fetches a MongoDB collection containing multiple collections and separates it into
individual data frames for each collection detected in the data. It identifies the appropriate identifier
column (e.g., participantId, workerId) and splits the data based on column name prefixes.

Usage

mongo.rune(collection, prefix = NULL, db_name = NULL, lower = TRUE)

Arguments

collection Character string specifying the Mongo collection

prefix Character string; default NULL, if specified returns only the dataframe with this
prefix

db_name Character string specifying the Mongo database

lower default TRUE convert prefixes to lower case

Details

The function performs the following steps:

• Retrieves the raw Qualtrics data using the getSurvey() function

• Identifies which identifier column to use (participantId, workerId, PROLIFIC_PID, or src_subject_id)

• Determines survey prefixes by analyzing column names

• Creates separate dataframes for each survey prefix found

• Assigns each dataframe to the global environment with names matching the survey prefixes

Value

If prefix is specified, returns a single dataframe with that prefix. Otherwise, creates multiple
dataframes in the global environment, one for each survey detected in the data. Each dataframe
is named after its survey prefix.

Examples

Not run:
Parse a MongoDB collection into its component dataframes
mongo.rune("combined_surveys")

After running, access individual survey dataframes directly:
head(pss) # Access the PSS survey dataframe

14 nda

head(cesd) # Access the CESD survey dataframe

Parse a single survey from composite collection
rgpts <- mongo.rune("combined_surveys", prefix = "rgpts")

End(Not run)

nda Generate validated NDA submission templates created in the ./nda di-
rectory

Description

This function processes requests for clean data sequentially for specified measures. It makes a
request to the NIH NDA API for the named data structures and runs the associated data remediation
routines. It then runs a series of unit tests to verify that the data quality standards are met.

Usage

nda(
...,
csv = FALSE,
rdata = FALSE,
spss = FALSE,
limited_dataset = FALSE,
skip_prompt = TRUE,
verbose = FALSE,
strict = TRUE,
dcc = FALSE

)

Arguments

... Strings, specifying the measures to process, which can be a Mongo collection,
REDCap instrument, or Qualtrics survey.

csv Optional; Boolean, if TRUE creates a .csv extract in ./tmp.

rdata Optional; Boolean, if TRUE creates an .rdata extract in ./tmp.

spss Optional; Boolean, if TRUE creates a .sav extract in ./tmp.
limited_dataset

Optional; Boolean, if TRUE does not perform date-shifting of interview_date or
age-capping of interview_age

skip_prompt Logical. If TRUE (default), skips confirmation prompts unless preferences aren’t
set yet. If FALSE, prompts for confirmation unless the user has previously cho-
sen to remember their preference.

ndaRequest 15

verbose Logical. If TRUE, shows detailed processing information. If FALSE (default),
shows only essential user-facing messages.

strict Logical. If TRUE (default), enforce strict NDA validation: required fields with
ANY missing data or recommended fields with ALL missing data will cause
validation failure. If FALSE (lenient mode), missing data triggers warnings but
allows processing to continue.

dcc Logical. If TRUE, include 11 DCC (Data Coordinating Center) fields from
ndar_subject01 (7 required + 4 recommended). Default FALSE.

Value

Prints the time taken for the data request process.

Author(s)

Joshua Kenney joshua.kenney@yale.edu

Examples

Not run:
nda("prl", csv=TRUE)
nda("rgpts", "kamin", rdata=TRUE)

Skip confirmation prompts
nda("prl", csv=TRUE, skip_prompt=TRUE)

Show detailed processing information
nda("prl", verbose=TRUE)

Use lenient validation mode (allow missing data with warnings)
nda("prl", strict=FALSE)

Include DCC fields from ndar_subject01
nda("prl", dcc=TRUE)

End(Not run)

ndaRequest Alias for ’nda’ (DEPRECATED)

Description

This function is deprecated. Please use ’nda’ instead. This is a legacy alias for the ’nda’ function to
maintain compatibility with older code.

Usage

ndaRequest(...)

mailto:joshua.kenney@yale.edu

16 oracle

Arguments

... Strings, specifying the measures to process, which can be a Mongo collection,
REDCap instrument, or Qualtrics survey.

Value

Prints the time taken for the data request process.

Examples

Not run:
DEPRECATED - use nda() instead
prl01 <- ndaRequest("prl01")

End(Not run)

oracle Fetch data from Oracle database to be stored in a data frame

Description

Retrieves data from an Oracle table or view and optionally joins it with a primary keys table as
specified in the configuration.

Usage

oracle(
table_name = NULL,
...,
fields = NULL,
where_clause = NULL,
join_primary_keys = TRUE,
custom_query = NULL,
max_rows = NULL,
date_format = NULL,
batch_size = 1000,
pii = FALSE,
interview_date = NULL,
all = FALSE,
schema = NULL

)

Arguments

table_name Name of the SQL table or view to query

... Optional column names to filter for. Only rows with non-missing values in ALL
specified columns will be returned.

oracle.desc 17

fields Optional vector of specific fields to select

where_clause Optional WHERE clause to filter results (without the "WHERE" keyword)
join_primary_keys

Boolean, whether to join with the primary keys table (default: TRUE)

custom_query Optional custom SQL query to execute instead of building one

max_rows Optional limit on the number of rows to return

date_format Optional format for date fields (default uses ISO format)

batch_size Number of records to retrieve per batch for large datasets

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

all Logical; if TRUE, use LEFT OUTER JOIN instead of INNER JOIN (default:
FALSE), similar to the ’all’ parameter in base R’s merge() function

schema Optional schema name to use for table qualification

Value

A data frame containing the requested SQL data

Examples

Not run:
Get data from a specific table
data <- oracle("participants")

Get data with a where clause
survey_data <- oracle("vw_surveyquestionresults",

where_clause = "resultidentifier = 'NRS'")

Get all records, including those without matching primary key
all_data <- oracle("candidate", all = TRUE)

Specify schema explicitly
schema_data <- oracle("survey_results", schema = "STUDY_DATA")

End(Not run)

oracle.desc Get Oracle table columns/metadata

Description

Get Oracle table columns/metadata

18 oracle.query

Usage

oracle.desc(table_name, schema = NULL)

Arguments

table_name Name of the table to get metadata for

schema Optional schema name

Value

A data frame with column information

oracle.index Get a list of tables from the Oracle database

Description

Get a list of tables from the Oracle database

Usage

oracle.index(schema = NULL)

Arguments

schema Optional schema name to filter tables

Value

A data frame with table information

oracle.query Perform a direct Oracle query with minimal processing

Description

Perform a direct Oracle query with minimal processing

Usage

oracle.query(query, pii = FALSE, schema = NULL)

oracle.test 19

Arguments

query The SQL query to execute

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

schema Optional schema name to qualify table names in the query

Value

A data frame with the query results

oracle.test Test Oracle database connection

Description

Tests the connection to the Oracle database using the configured DSN and credentials. This is a
simple connectivity test that doesn’t perform any data operations.

Usage

oracle.test()

Value

A logical value indicating whether the connection was successful

Examples

Not run:
Test the Oracle connection
if (oracle.test()) {

message("Oracle connection successful!")
} else {

message("Oracle connection failed!")
}

End(Not run)

20 qualtrics

qualtrics Retrieve Survey Data from Qualtrics

Description

Retrieve Survey Data from Qualtrics

Usage

qualtrics(
qualtrics_alias,
...,
institution = NULL,
label = FALSE,
interview_date = NULL,
complete = FALSE

)

Arguments

qualtrics_alias

The alias for the Qualtrics survey to be retrieved.

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

institution Optional. The institution name (e.g., "temple" or "nu"). If NULL, all institutions
will be searched.

label Logical indicating whether to return coded values or their associated labels (de-
fault is FALSE).

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

complete Logical; default FALSE, if TRUE only returns rows where Progress == 100

Value

A cleaned and harmonized data frame containing the survey data with superkeys first.

Examples

Not run:
Get survey by alias (will search all institutions)
survey_data <- qualtrics("rgpts")

End(Not run)

qualtrics.dict 21

qualtrics.dict Fetch Qualtrics survey metadata to be stored in data frame

Description

This function extracts column mappings from the metadata of a Qualtrics survey data frame. It can
accept either a data frame containing Qualtrics data, a variable name as string, or a survey alias
string.

Usage

qualtrics.dict(survey_alias, exclude_embedded = TRUE)

Arguments

survey_alias Can either be an existing dataframe, variable name as string, or survey alias
string

exclude_embedded

Only select QIDs

Value

A list containing the mappings of column names to survey questions.

qualtrics.index Display table of available Qualtrics surveys

Description

Retrieves a list of all available surveys from the Qualtrics API. Shows all surveys pulled down from
Qualtrics, with alias and institution information merged from config.yml where available.

Usage

qualtrics.index(institution = NULL, all = FALSE)

Arguments

institution Optional; the institution identifier to use. If NULL, uses all institutions specified
in the configuration file (or all available credentials if no config).

all Logical; deprecated parameter kept for backward compatibility. All surveys are
now shown by default. Default is FALSE.

Value

A data frame containing the IDs and names of all available surveys from the Qualtrics API. Surveys
with aliases configured in config.yml will show the alias and institution; unmapped surveys will
show NA for these fields.

22 qualtrics.rune

qualtrics.rune Parse composite Qualtrics survey into component data frames by vari-
able prefix

Description

This function fetches a Qualtrics data frame containing multiple surveys and separates it into in-
dividual data frames for each survey detected in the data. It identifies the appropriate identifier
column (e.g., participantId, workerId) and splits the data based on column name prefixes.

Usage

qualtrics.rune(
qualtrics_alias,
prefix = NULL,
institution = NULL,
label = FALSE,
interview_date = NULL,
complete = FALSE,
lower = TRUE

)

Arguments

qualtrics_alias

Character string specifying the Qualtrics survey alias to retrieve.

prefix Character string; default NULL, if specified returns only the dataframe with this
prefix

institution Character string; default NULL, specify location

label Logical; default TRUE, returns coded values as labels instead of raw values.

interview_date Logical or Date String, returns all data before date

complete Logical; default FALSE, if TRUE only returns rows where Progress == 100

lower default TRUE convert prefixes to lower case

Details

The function performs the following steps:

• Retrieves the raw Qualtrics data using the getSurvey() function

• Identifies which identifier column to use (participantId, workerId, PROLIFIC_PID, or src_subject_id)

• Determines survey prefixes by analyzing column names

• Creates separate dataframes for each survey prefix found

• Assigns each dataframe to the global environment with names matching the survey prefixes

redcap 23

Value

Creates multiple dataframes in the global environment, one for each survey detected in the data.
Each dataframe is named after its survey prefix.

Examples

Not run:
Parse a a Qualtrics survey into its component dataframes
qualtrics.rune("combined_surveys", label = FALSE)

After running, access individual survey dataframes directly:
head(pss) # Access the PSS survey dataframe
head(cesd) # Access the CESD survey dataframe

Parse a single Qualtrics survey from composite survey
rgpts <- qualtrics.rune("combined_surveys", prefix = "rgpts")

End(Not run)

redcap Fetch data from REDCap to be stored in a data frame

Description

Retrieves data from a REDCap instrument and ensures subject identifiers are propagated across all
events

Usage

redcap(
instrument_name = NULL,
...,
raw_or_label = "raw",
redcap_event_name = NULL,
batch_size = 1000,
records = NULL,
fields = NULL,
pii = FALSE,
interview_date = NULL,
date_format = "ymd",
complete = NULL

)

24 redcap.dict

Arguments

instrument_name

Name of the REDCap instrument

... Optional column names to filter for. Only rows with non-missing values in
ALL specified columns will be returned. This is useful for filtering data to only
include complete cases for specific variables of interest.

raw_or_label Whether to return raw or labeled values
redcap_event_name

Optional event name filter. Can be a single string or a vector of event names
(e.g., c("event1", "event2"))

batch_size Number of records to retrieve per batch

records Optional vector of specific record IDs

fields Optional vector of specific fields

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

date_format Default ymd define date format for interview_date

complete Option boolean TRUE will return only forms marked as complete in REDCap

Value

A data frame containing the requested REDCap data

Examples

Not run:
Get data from a specific instrument
data <- redcap("demographics")

End(Not run)

redcap.dict Fetch REDCap data dictionary to be stored in data frame

Description

This function extracts metadata/dictionary information from REDCap. It can accept either an in-
strument name to fetch new data, an existing data frame with instrument attributes, or a variable
name as string.

Usage

redcap.dict(instrument_name)

redcap.index 25

Arguments

instrument_name

Can either be an instrument name to fetch new data, a data frame returned by
redcap(), or a variable name as string

Value

A data frame containing the data dictionary/metadata for the specified instrument

redcap.index Display table of available REDCap instruments and their labels

Description

Retrieves a list of all available REDCap forms as a formatted table

Usage

redcap.index()

Value

A formatted table (kable) of available REDCap instruments/forms

redcap.rune Parse composite REDCap instrument into component data frames by
variable prefix

Description

This function fetches a REDCap instrument and separates it into individual data frames for each
survey/collection detected in the data based on column name prefixes. It identifies the appropriate
identifier column and splits the data accordingly.

Usage

redcap.rune(
instrument_name,
prefix = NULL,
raw_or_label = "raw",
redcap_event_name = NULL,
batch_size = 1000,
records = NULL,
fields = NULL,
pii = FALSE,

26 redcap.rune

interview_date = NULL,
date_format = "ymd",
lower = TRUE

)

Arguments

instrument_name

Name of the REDCap instrument

prefix Character string; default NULL, if specified returns only the dataframe with this
prefix

raw_or_label Whether to return raw or labeled values
redcap_event_name

Optional event name filter. Can be a single string or a vector of event names
(e.g., c("event1", "event2"))

batch_size Number of records to retrieve per batch

records Optional vector of specific record IDs

fields Optional vector of specific fields

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

interview_date Optional; date filtering parameter

date_format Default ymd define date format for interview_date

lower default TRUE convert prefixes to lower case

Value

If prefix is specified, returns a single dataframe with that prefix. Otherwise, creates multiple
dataframes in the parent environment, one for each survey detected in the data. Each dataframe
is named after its survey prefix.

Examples

Not run:
Parse a REDCap instrument into its component dataframes
redcap.rune("baseline_assessment")

After running, access individual survey dataframes directly:
head(pss) # Access the PSS survey dataframe
head(cesd) # Access the CESD survey dataframe

Parse a single survey from composite instrument
rgpts <- redcap.rune("baseline_assessment", prefix = "rgpts")

End(Not run)

rune 27

rune Parse composite data frame into component data frames by variable
prefix

Description

This function takes a data frame containing multiple measures and separates it into individual data
frames for each measure detected in the data. It identifies the appropriate identifier column (e.g.,
participantId, workerId) and splits the data based on column name prefixes.

Usage

rune(df, prefix = NULL, lower = TRUE)

Arguments

df a dataframe containing multiple, prefixed measures

prefix Character string; default NULL, if specified returns only the dataframe with this
prefix

lower default TRUE convert prefixes to lower case

Details

The function performs the following steps:

• Identifies which identifier column to use (participantId, workerId, PROLIFIC_PID, or src_subject_id)

• Determines survey prefixes by analyzing column names

• Creates separate dataframes for each survey prefix found

• Assigns each dataframe to the global environment with names matching the survey prefixes

Value

If prefix is specified, returns a single dataframe with that prefix. Otherwise, creates multiple
dataframes in the global environment, one for each survey detected in the data. Each dataframe
is named after its survey prefix.

Examples

Parse a data frame containing multiple surveys
combined_df <- data.frame(

record_id = c("REC001", "REC002", "REC003", "REC004"),
src_subject_id = c("SUB001", "SUB002", "SUB003", "SUB004"),
subjectkey = c("KEY001", "KEY002", "KEY003", "KEY004"),
site = c("Yale", "NU", "Yale", "NU"),
phenotype = c("A", "B", "A", "C"),
visit = c(1, 2, 2, 1),
state = c("complete", "completed baseline", "in progress", NA),

28 scry

status = c(NA, NA, NA, "complete"),
lost_to_followup = c(FALSE, FALSE, TRUE, NA),
interview_date = c("2023-01-15", "2023/02/20", NA, "2023-03-10"),
foo_1 = c(1, 3, 5, 7),
foo_2 = c("a", "b", "c", "d"),
bar_1 = c(2, 4, 6, 8),
bar_2 = c("w", "x", "y", "z")

)
rune(combined_df)

After running, access individual survey dataframes directly:
head(foo) # Access the foo dataframe
head(bar) # Access the bar dataframe

Parse a single survey from composite dataframe
foo_df <- rune(combined_df, prefix = "foo")

scry Initialize the wizaRdry directory structure inside an R project

Description

Creates the standard directory structure required for the wizaRdry package to function properly.
This includes folders for data cleaning scripts, NDA submission templates, and temporary outputs.
It can detect and repair incomplete directory structures, and optionally create an R project.

Usage

scry(
study_alias = NULL,
path = ".",
overwrite = FALSE,
repair = FALSE,
show_tree = NULL,
create_project = FALSE,
examples = FALSE,
skip_prompt = TRUE

)

Arguments

study_alias Character string specifying the short name for the study e.g. impact, capr, sing

path Character string specifying the directory path where the structure should be cre-
ated. Defaults to the current working directory.

overwrite Logical. If TRUE, will overwrite existing files. If FALSE (default), will not
replace existing files.

scry 29

repair Logical. If TRUE, will attempt to repair an incomplete directory structure. If
FALSE, will abort with an error message when encountering an incomplete
structure.

show_tree Logical. If TRUE (default on first run), will display a visual file tree. Set to
FALSE to suppress the tree view.

create_project Logical. If TRUE, will create an R project file if one doesn’t exist. If FALSE
(default), will not create an R project.

examples Logical. If TRUE (default when not repairing), will create example script tem-
plates. If FALSE (default when repairing), will skip creating example scripts.

skip_prompt Logical. If TRUE (default), will skip the initial confirmation prompt if y/n pref-
erences are not set yet. FALSE if specified.

Details

The function creates the following directory structure:

• clean/

– csv/
– mongo/
– qualtrics/
– redcap/
– oracle/
– sql/

• nda/

– csv/
– mongo/
– qualtrics/
– redcap/
– oracle/
– sql/

• tmp/

It also creates template config.yml and secrets.R files, and optionally an R project file.

Value

Invisible TRUE if successful.

Examples

Not run:
Initialize in current directory
scry()

Repair structure in current directory
scry(repair = TRUE)

30 sift

Initialize in a specific directory with an R project
scry("path/to/project", create_project = TRUE, repair = TRUE)

Skip the tree display
scry(repair = TRUE, show_tree = FALSE)

Explicitly create example scripts when repairing
scry(repair = TRUE, examples = TRUE)

Skip the confirmation prompt
scry(skip_prompt = TRUE)

End(Not run)

sift Filter data frame by superkey parameters, rows, and columns

Description

Filter data frame by superkey parameters, rows, and columns

Usage

sift(
df,
rows = NULL,
cols = NULL,
record_id = NULL,
src_subject_id = NULL,
subjectkey = NULL,
site = NULL,
subsiteid = NULL,
sex = NULL,
race = NULL,
ethnic_group = NULL,
phenotype = NULL,
phenotype_description = NULL,
status = NULL,
lost_to_followup = NULL,
twins_study = NULL,
sibling_study = NULL,
family_study = NULL,
sample_taken = NULL,
visit = NULL,
week = NULL,
arm = NULL,

sift 31

interview_date = NULL
)

Arguments

df Dataframe to be filtered and trimmed based on the provided parameters.

rows Optional; either a single row name or a vector of row names to be retained in the
final output. If NULL or empty, all rows in the dataframe are retained.

cols Optional; either a single column name or a vector of column names to be re-
tained in the final output. If NULL or empty, all columns in the dataframe are
retained.#’ Data Filter

record_id Optional; either a single record_id or a vector of record_ids to filter the dataframe
by

src_subject_id Optional; either a single subject ID or a vector of subject IDs to filter the dataframe
by

subjectkey Optional; either a single subjectkey or a vector of subjectkeys to filter the dataframe
by

site Optional; either a single site value or a vector of site values to filter the dataframe
by (e.g., Yale, NU)

subsiteid Optional; either a single subsiteid or a vector of subsiteids to filter the dataframe
by

sex Optional; either a single sex value or a vector of sex values at birth to filter the
dataframe by (e.g., ’M’, ’F’)

race Optional; either a single race value or a vector of race values to filter the dataframe
by

ethnic_group Optional; either a single ethnic_group value or a vector of ethnic_group values
to filter the dataframe by

phenotype Optional; either a single phenotype value or a vector of phenotype values to filter
the dataframe by

phenotype_description

Optional; either a single phenotype_description or a vector of phenotype_descriptions
to filter the dataframe by

status Optional; either a single status string or a vector of status conditions to filter the
dataframe by. Used if either ’state’ or ’status’ column exists in the dataframe.
Can include values like ’complete’, ’completed baseline’, ’completed 12m’,
’completed 24m’, etc.

lost_to_followup

Optional; either a single value or a vector of values to filter the dataframe by
(checks both ’lost_to_followup’ and ’lost_to_follow-up’ columns)

twins_study Optional; either a single twins_study value or a vector of twins_study values to
filter the dataframe by

sibling_study Optional; either a single sibling_study value or a vector of sibling_study values
to filter the dataframe by

32 sift

family_study Optional; either a single family_study value or a vector of family_study values
to filter the dataframe by

sample_taken Optional; either a single sample_taken value or a vector of sample_taken values
to filter the dataframe by

visit Optional; either a single visit value or a vector of visit values to filter the dataframe
by. Only used if ’visit’ column exists in the dataframe.

week Optional; either a single week value or a vector of week values to filter the
dataframe by. Only used if ’week’ column exists in the dataframe.

arm Optional; either a single arm value or a vector of arm values to filter the dataframe
by (e.g., drug, placebo)

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

Value

A filtered dataframe based on the provided parameters, and containing only the columns specified
in ’cols’. If no columns are specified, returns the entire dataframe with applied row filters.

Examples

Create a sample dataframe
sample_df <- data.frame(

record_id = c("REC001", "REC002", "REC003", "REC004"),
src_subject_id = c("SUB001", "SUB002", "SUB003", "SUB004"),
subjectkey = c("KEY001", "KEY002", "KEY003", "KEY004"),
site = c("Yale", "NU", "Yale", "NU"),
phenotype = c("A", "B", "A", "C"),
visit = c(1, 2, 2, 1),
state = c("complete", "completed baseline", "in progress", NA),
status = c(NA, NA, NA, "complete"),
lost_to_followup = c(FALSE, FALSE, TRUE, NA),
interview_date = c("2023-01-15", "2023/02/20", NA, "2023-03-10")

)

Set row names for demonstration
rownames(sample_df) <- c("foo", "bar", "baz", "qux")

Filter by specific date
filtered1 <- sift(sample_df,

cols = c("src_subject_id", "phenotype"),
visit = 2,
interview_date = "01/31/2023")

Filter to include only rows with non-NA interview dates
filtered2 <- sift(sample_df,

interview_date = TRUE)

Filter by status (works with either state or status column)
filtered3 <- sift(sample_df,

sql 33

status = c("complete", "completed baseline"))

Filter with specific row names
filtered4 <- sift(sample_df,

rows = c("foo", "qux"))

Filter with vector of visit values
filtered6 <- sift(sample_df,

visit = c(1, 2))

Filter by lost_to_followup
filtered10 <- sift(sample_df,

lost_to_followup = FALSE)

Filter by src_subject_id
filtered11 <- sift(sample_df,

src_subject_id = c("SUB001", "SUB004"))

Multiple filters combined
filtered12 <- sift(sample_df,

site = "Yale",
visit = 1,
cols = c("record_id", "src_subject_id", "site"))

sql Fetch data from SQL database to be stored in a data frame

Description

Retrieves data from a SQL table and optionally joins it with a primary keys table as specified in the
configuration.

Usage

sql(
table_name = NULL,
...,
fields = NULL,
where_clause = NULL,
join_primary_keys = TRUE,
custom_query = NULL,
max_rows = NULL,
date_format = NULL,
batch_size = 1000,
pii = FALSE,
interview_date = NULL,
all = FALSE

)

34 sql

Arguments

table_name Name of the SQL table or view to query

... Optional column names to filter for. Only rows with non-missing values in ALL
specified columns will be returned.

fields Optional vector of specific fields to select

where_clause Optional WHERE clause to filter results (without the "WHERE" keyword)

join_primary_keys

Boolean, whether to join with the primary keys table (default: TRUE)

custom_query Optional custom SQL query to execute instead of building one

max_rows Optional limit on the number of rows to return

date_format Optional format for date fields (default uses ISO format)

batch_size Number of records to retrieve per batch for large datasets

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

interview_date Optional; can be either: - A date string in various formats (ISO, US, etc.) to
filter data up to that date - A boolean TRUE to return only rows with non-NA
interview_date values

all Logical; if TRUE, use LEFT OUTER JOIN instead of INNER JOIN (default:
FALSE), similar to the ’all’ parameter in base R’s merge() function

Value

A data frame containing the requested SQL data

Examples

Not run:
Get data from a specific table
data <- sql("participants")

Get data with a where clause
survey_data <- sql("vw_surveyquestionresults",

where_clause = "resultidentifier = 'NRS'")

Get all records, including those without matching primary key
all_data <- sql("candidate", all = TRUE)

End(Not run)

sql.desc 35

sql.desc Get SQL table columns/metadata

Description

Get SQL table columns/metadata

Usage

sql.desc(table_name)

Arguments

table_name Name of the table to get metadata for

Value

A data frame with column information

sql.index Get a list of tables from the SQL database

Description

Get a list of tables from the SQL database

Usage

sql.index(schema = NULL)

Arguments

schema Optional schema name to filter tables

Value

A data frame with table information

36 to.csv

sql.query Perform a direct SQL query with minimal processing

Description

Perform a direct SQL query with minimal processing

Usage

sql.query(query, pii = FALSE)

Arguments

query The SQL query to execute

pii Logical; if FALSE (default), remove fields marked as PII. TRUE keeps PII.

Value

A data frame with the query results

to.csv Create .csv file from a data frame

Description

This function exports a given R data frame to a CSV file format. The resulting file is saved in
the "tmp" directory. If a filename is not specified, the function uses the name of the data frame
variable. The ".csv" extension is appended automatically to the filename. The function will prompt
for confirmation before creating the file, with an option to remember the user’s preference for future
calls.

Usage

to.csv(df, df_name = NULL, path = ".", skip_prompt = TRUE)

Arguments

df Data frame to be exported to CSV format.

df_name Optional; a custom file name for the saved CSV file. If not provided, the name
of the data frame variable is used. The function adds the ".csv" extension auto-
matically.

path Character string specifying the directory path where the "tmp" folder and CSV
file should be created. Defaults to the current working directory.

skip_prompt Logical. If TRUE (default), skips the confirmation prompt. If FALSE, will
prompt for confirmation unless the user has previously chosen to remember their
preference.

to.nda 37

Value

Invisible TRUE if successful. The function writes a CSV file to the specified path and prints a
message indicating the file’s location.

Author(s)

Joshua Kenney joshua.kenney@yale.edu

Examples

Not run:
Create a sample data frame
sample_df <- data.frame(

id = 1:3,
name = c("Alice", "Bob", "Charlie")

)

Basic usage with prompt
to.csv(sample_df)

Custom filename
to.csv(sample_df, "participants_data")

Skip the confirmation prompt
to.csv(sample_df, skip_prompt = TRUE)

Save in a different directory
to.csv(sample_df, path = "path/to/project")

End(Not run)

to.nda Create NDA Submission Template

Description

This function creates a CSV template file for National Data Archive (NDA) submissions. It extracts
the data from a specified data frame and formats it according to NDA requirements, with the struc-
ture name split into base name and suffix in the first line. The function will prompt for confirmation
before creating the file, with an option to remember the user’s preference for future calls.

This function creates a CSV template file for National Data Archive (NDA) submissions. It extracts
the data from a specified data frame and formats it according to NDA requirements, with the struc-
ture name split into base name and suffix in the first line. The function will prompt for confirmation
before creating the file, with an option to remember the user’s preference for future calls.

mailto:joshua.kenney@yale.edu

38 to.nda

Usage

to.nda(
df,
path = ".",
skip_prompt = TRUE,
selected_fields = NULL,
skip_prompts = FALSE,
verbose = FALSE

)

to.nda(
df,
path = ".",
skip_prompt = TRUE,
selected_fields = NULL,
skip_prompts = FALSE,
verbose = FALSE

)

Arguments

df Data frame to be used as template or character string naming a data frame in the
global environment.

path Character string specifying the directory path where the "tmp" folder and tem-
plate file should be created. Defaults to the current working directory.

skip_prompt Logical. If TRUE (default), skips the confirmation prompt. If FALSE, will
prompt for confirmation unless the user has previously chosen to remember their
preference.

selected_fields

Character vector of field names to include in template. If NULL (default), uses
all fields from data frame. Used by create_nda_files() for centralized field selec-
tion.

skip_prompts Logical. If TRUE, skip ALL interactive prompts (used when called from cre-
ate_nda_files() with pre-selected fields). Default: FALSE.

verbose Logical. If TRUE, show detailed progress messages. Default: FALSE.

Details

The function will:

1. Create a ’tmp’ directory if it doesn’t exist

2. Parse the structure name into base and suffix components (e.g., "eefrt01" -> "eefrt" and "01")

3. Write the structure name components as the first line

4. Write column headers as the second line

5. Write the data rows below

The function will:

to.nda 39

1. Create a ’tmp’ directory if it doesn’t exist

2. Parse the structure name into base and suffix components (e.g., "eefrt01" -> "eefrt" and "01")

3. Write the structure name components as the first line

4. Write column headers as the second line

5. Write the data rows below

Value

Invisible TRUE if successful. Creates a CSV file at the specified path and prints a message with the
file location.

Invisible TRUE if successful. Creates a CSV file at the specified path and prints a message with the
file location.

Examples

Not run:
First create some sample data
eefrt01 <- data.frame(
src_subject_id = c("SUB001", "SUB002"),
interview_age = c(240, 360),
interview_date = c("01/01/2023", "02/15/2023"),
response_time = c(450, 520)

)

Create the NDA template using the data frame directly
to.nda(eefrt01)

Or using the name as a string
to.nda("eefrt01")

Skip the confirmation prompt
to.nda(eefrt01, skip_prompt = TRUE)

End(Not run)

Not run:
First create some sample data
eefrt01 <- data.frame(

src_subject_id = c("SUB001", "SUB002"),
interview_age = c(240, 360),
interview_date = c("01/01/2023", "02/15/2023"),
response_time = c(450, 520)

)

Create the NDA template using the data frame directly
to.nda(eefrt01)

Or using the name as a string
to.nda("eefrt01")

40 to.rds

Skip the confirmation prompt
to.nda(eefrt01, skip_prompt = TRUE)

End(Not run)

to.rds Create .rds file from a data frame

Description

This function exports a given R data frame to an RDS file format. The resulting file is saved in
the "tmp" directory. If a filename is not specified, the function uses the name of the data frame
variable. The ".rds" extension is appended automatically to the filename. The function will prompt
for confirmation before creating the file, with an option to remember the user’s preference for future
calls.

Usage

to.rds(df, df_name = NULL, path = ".", skip_prompt = TRUE)

Arguments

df Data frame to be exported to RDS format.

df_name Optional; a custom file name for the saved RDS file. If not provided, the name
of the data frame variable is used. The function adds the ".rds" extension auto-
matically.

path Character string specifying the directory path where the "tmp" folder and RDS
file should be created. Defaults to the current working directory.

skip_prompt Logical. If TRUE (default), skips the confirmation prompt. If FALSE, will
prompt for confirmation unless the user has previously chosen to remember their
preference.

Value

Invisible TRUE if successful. The function writes an RDS file to the specified path and prints a
message indicating the file’s location.

Examples

Not run:
Create a sample data frame
sample_df <- data.frame(

id = 1:3,
name = c("Alice", "Bob", "Charlie")

)

Basic usage with prompt

to.sav 41

to.rds(sample_df)

Custom filename
to.rds(sample_df, "participants_data")

Skip the confirmation prompt
to.rds(sample_df, skip_prompt = TRUE)

Save in a different directory
to.rds(sample_df, path = "path/to/project")

End(Not run)

to.sav Create .sav SPSS file from a data frame

Description

This function takes a R data frame and writes it to an SPSS file using the Haven package. The
resulting file will be stored in the "tmp" directory with a default name derived from the data frame
variable name, but can be customized if desired. The function will prompt for confirmation before
creating the file, with an option to remember the user’s preference for future calls.

Usage

to.sav(df, df_name = NULL, path = ".", skip_prompt = TRUE)

Arguments

df Data frame to be exported to SPSS format.

df_name Optional; custom file name for the saved SPSS file. If not provided, the name
of the data frame variable will be used. The ".sav" extension will be appended
automatically.

path Character string specifying the directory path where the "tmp" folder and SPSS
file should be created. Defaults to the current working directory.

skip_prompt Logical. If TRUE (default), skips the confirmation prompt. If FALSE, will
prompt for confirmation unless the user has previously chosen to remember their
preference.

Value

Invisible TRUE if successful. Writes an SPSS file to the designated path and prints a message
indicating the file’s location.

42 wizaRdry-deprecated

Examples

Not run:
Create a sample data frame
sample_df <- data.frame(

id = 1:3,
score = c(85, 92, 78),
group = c("A", "B", "A")

)

Basic usage with prompt
to.sav(sample_df)

Custom filename
to.sav(sample_df, "participants_data")

Skip the confirmation prompt
to.sav(sample_df, skip_prompt = TRUE)

Save in a different directory
to.sav(sample_df, path = "path/to/project")

End(Not run)

wizaRdry-deprecated Deprecated functions in wizaRdry

Description

Deprecated functions in wizaRdry

Details

These functions are deprecated and may be removed in a future release. Prefer the suggested re-
placements.

Deprecated functions

createCsv(...) Use to.csv(...) instead.
createRds(...) Use to.rds(...) instead.
createSpss(...) Use to.sav(...) instead.
dataFilter(...) Use sift(...) instead.
dataMerge(...) Use meld(...) instead.
dataRequest(...) Use clean(...) instead.
getRedcap(...) Use redcap(...) instead.
getSurvey(...) Use qualtrics(...) instead.
getTask(...) Use mongo(...) instead.
ndaRequest(...) Use nda(...) instead.

wizaRdry-deprecated 43

See Also

help("Deprecated")

Index

clean, 3
createCsv, 4
createRds, 4
createSpss, 5

dataFilter, 6
dataMerge, 6
dataRequest, 7

getRedcap, 8
getSurvey, 8
getTask, 9

meld, 10
mongo, 11
mongo.index, 12
mongo.rune, 13

nda, 14
ndaRequest, 15

oracle, 16
oracle.desc, 17
oracle.index, 18
oracle.query, 18
oracle.test, 19

qualtrics, 20
qualtrics.dict, 21
qualtrics.index, 21
qualtrics.rune, 22

redcap, 23
redcap.dict, 24
redcap.index, 25
redcap.rune, 25
rune, 27

scry, 28
sift, 30
sql, 33

sql.desc, 35
sql.index, 35
sql.query, 36

to.csv, 36
to.nda, 37
to.rds, 40
to.sav, 41

wizaRdry-deprecated, 42

44

	clean
	createCsv
	createRds
	createSpss
	dataFilter
	dataMerge
	dataRequest
	getRedcap
	getSurvey
	getTask
	meld
	mongo
	mongo.index
	mongo.rune
	nda
	ndaRequest
	oracle
	oracle.desc
	oracle.index
	oracle.query
	oracle.test
	qualtrics
	qualtrics.dict
	qualtrics.index
	qualtrics.rune
	redcap
	redcap.dict
	redcap.index
	redcap.rune
	rune
	scry
	sift
	sql
	sql.desc
	sql.index
	sql.query
	to.csv
	to.nda
	to.rds
	to.sav
	wizaRdry-deprecated
	Index

