The latex-lab-testphase-13doc package”

Ulrike Fischer, BTEX Project
January 25, 2026

Contents

1 Introduction 1

2 implementation 1
2.1 Declaration 2
2.2 Tagandroles e 2
2.3 Variables 2
2.4 The function enviroment 3
2.5 The syntax environment L Lo 4
2.6 The macro environment it 5
2.7 The macrocode environment 7
2.8 New docelements 8
2.9 \maketitle 10
2.10 Sectioning commands and table of contents 10
2.11 Support fancyvrb oL 11

1 Introduction

This package provides tagging support for the 13doc class. It is work in progress. It
is neither garantied that every element is correctly tagged nor that the output looks
identical to the untagged version.

If a documentation is tagged with this code, it is important to check the log-file for
warnings, the tag structure for missing parts and the output for deviations!

Feedback at https://github.com/latex3/tagging-project is welcome!

TODO: Index?

2 implementation

1 (xpackage)

*

https://github.com/latex3/tagging-project

\l codedoc_current names struct tl

\g__codedoc macroname structnum seq

2.1 Declaration

> \ProvidesExplPackage {latex-lab-testphase-13doc} {2025-05-07} {0.80b}
; { Tagging Support for the 1l3doc class }

some minimal error checking

+ \IfClassLoadedF{13doc}
s {\PackageError{latex-lab-testphase-13doc}{This~package~requires~the~13doc~class!}{}}

s \IfDocumentMetadataF
7 {\PackageError{latex-lab-testphase-13doc}{This~package~requires~the~PDF~management!}{}}

2.2 Tag and roles

The exact tagging structure is not yet clear. Especially for verbatim and code material.
So we define roles that we can exchange when needed.

¢ \tagpdfsetup

o {

10 role/mew-tag=function/Sect,

11 role/nmew-tag=functionnames/Caption,
12 role/new-tag=functionname/Code,

13 role/new-tag=functionnamepart/Span,
14 role/mew-tag=syntax/Sect,

15 role/new-tag=function-description/Div,
16 role/mew-tag=macro/Sect,

17 role/nmew-tag=macronames/Caption,

15 role/mnew-tag=macroname/Span,

v role/new-tag=variable/Sect,

20 role/new-tag=variablenames/Caption,
21 role/mnew-tag=variablename/Span,

2> role/new-tag=codelinenum/Span,

>3 role/new-tag=part/H1

2.3 Variables

The structure around the command names in the margin must be moved around. For
this we define a variable that will hold the relevant current structure.
»s \tl_new:N\1__codedoc_current_names_struct_tl

(End of definition for \1__codedoc_current_names_struct_tl.)

This holds the structure numbers of the structure around every command name in a
macro environment. As the structures are created inside a box this is a global variable,
which is cleared at the end of the outer macro environment.

2 \seq_new:N\g__codedoc_macroname_structnum_seq

(End of definition for \g__codedoc_macroname_structnum_seq.)

__codedoc_function_typeset_start:

\

\

__codedoc_typeset functions:

__codedoc_function descr start:w

2.4 The function enviroment

This command starts the typesetting and opens the structure.

7 \cs_set_protected:Npn __codedoc_function_typeset_start:

28 {

29 \par \bigskip

30 \tagstructbegin{tag=function}

The paragraph structure should start after the building of the macronames. TODO:
check if we can simply move ...

31 \tagpdfparaOff

32 \noindent

33 }

(End of definition for __codedoc_function_typeset_start:.)

TODO: \toprule and \bottomrule should be artifacts with pdflatex (they are already
with lualatex).

32 \cs_set_protected:Npn __codedoc_typeset_functions:

EE O A

36 \small\ttfamily

37 __codedoc_target:

38 \Hy@MakeCurrentHref { HD. \int_use:N \c@HD@hypercount }
The function names are typeset as a tabular. We use the table code to add the tagging.
39 \tagstructbegin{tag=functionnames}

40 \tagmcbegin{}

41 \tagpdfsetup{table/tagging=div}

a2 \tl_set:Nn\1l__tbl_rowtag_tl {functionname}

43 \tl_set:Nn\1__tbl_celltag_tl {functionnamepart}

44 \begin{tabular} [t] { @{} 1 @{} >{\hspace{\tabcolsep}} r @{} }
45 \toprule

46 __codedoc_function_extra_labels:

47 __codedoc_names_typeset:

a8 __codedoc_typeset_dates:

49 \bottomrule

50 \end{tabular}

51 \tagmcend

52 \tagstructend

53 \normalfont\normalsize\par

54 }

(End of definition for __codedoc_typeset_functions:.)

The function enviroment is mainly a box. We store the structure for the syntax environ-
ment.

s \cs_set_protected:Npn __codedoc_function_descr_start:w

o

56 {

57 \vcoffin_set:Nnw \1__codedoc_descr_coffin { \textwidth }

58 \tagpdfparaln

59 \tagstructbegin{tag=function-description}

60 \tl_set:Ne\l__codedoc_current_names_struct_tl{\tag_get :n{struct_num}}
61 \noindent \ignorespaces

e)

(End of definition for __codedoc_function_descr_start:w.)

_codedoc function typeset stop: At the end we must close the two main structures.

63 \cs_set_protected:Npn __codedoc_function_typeset_stop:

64 {

65 \par

66 \tagstructend ’ function-description

67 \tagstructend % function

68 \dim_set:Nn \prevdepth { \coffin_dp:N \1__codedoc_descr_coffin }
69 \allowbreak

70 ¥

(End of definition for __codedoc_function_typeset_stop:.)

2.5 The syntax environment

These environments are full of boxes that are moved around. Getting the mc-chunks
right is not trivial.
TODO: check if one should change/simplify the tagging of the inner minipage.

__codedoc_syntax:w

71 \cs_set_protected:Npn __codedoc_syntax:w

72 {

73 \box_if_empty:NF \g__codedoc_syntax_box

74 { \msg_error:nn { 13doc } { multiple-syntax } }

75 \dim_set:Nn \1__codedoc_syntax_dim

76 {

77 \textwidth

78 \bool_if:NT \1__codedoc_long_name_bool

79 { + \marginparwidth - \1__codedoc_trial_width_dim }
80 }

81 \tag_mc_end_push:

82 \hbox_gset:Nw \g__codedoc_syntax_box

83 \tl_if_empty:NTF\1__codedoc_current_names_struct_tl
84 {

85 \tagstructbegin{tag=syntax}

86 }

87 {

TODO: check if firstkid is the right thing.

88 \tagstructbegin{tag=syntax,firstkid,parent=\1__codedoc_current_names_struct_tl}

89 }

9 \small \ttfamily

01 \tagpdfsetup{table/tagging=false}

02 \tagpdfparaOff

03 \arrayrulecolor{white}

94 \begin{tabular} { @{} p{\1__codedoc_syntax_dim} @{} }
95 \toprule

9% \begin{minipage} [t]{\1__codedoc_syntax_dim}
7 \raggedright

% \obeyspaces

99 \obeylines

00}
(End of definition for __codedoc_syntax:w.)

__codedoc_syntax_end:

__codedoc_macro_dump:

101 \cs_set_protected:Npn __codedoc_syntax_end:

102 {

103 \end{minipage}

104 \end{tabular}

105 \arrayrulecolor{black}

106 \tagstructend

107 \hbox_gset_end:

108 \tag_mc_begin_pop:n{}

109 \bool_if:NF \1__codedoc_in_function_bool
110 {

111 \begin{quote}

112 \mode_leave_vertical:

113 \box_use_drop:N \g__codedoc_syntax_box
114 \end{quote}

115 }

116 ¥

(End of definition for __codedoc_syntax_end:.)

2.6 The macro environment

The macro environment is difficult: It collects various content in boxes and outputs
everything at the end in __codedoc_macro_dump:, including the command names in
the argument which are output in the margin. A macro environment can have more than
one name in the argument and the environment be nested and the respective command
names are then combined with the outer names. A command name can link to a function
environment, which mean that it isn’t simple text but contains a structure. This means
that one has to collect structure numbers to insert them when needed.

Here we have larger changes as we need also to replace the trivlist by a displayblock.

117 \cs_set_protected:Npn __codedoc_macro_dump:

118 {

119 \int_compare:nNnF{\1__codedoc_nested_macro_int}>{1}

120 {

121 \begin{displayblock} [tag-name=macro,begin-vspace=\MacroTopsep]

we add here a container for the macronames which are built later and use the structures
from the list.

122 \tagstructbegin{tag=macronames}

123 \tl_set:Ne \1__codedoc_current_names_struct_tl {\tag_get:n{struct_num}}
124 \seq_map_inline:Nn \g__codedoc_macroname_structnum_seq
125 {\tag_struct_use_num:n {##1}}

126 \seq_gclear:N \g__codedoc_macroname_structnum_seq

127 \tagstructend

128 ¥

129 \noindent\1llap

130 { \tagmcend

131 \hbox_unpack_drop:N \1__codedoc_macro_index_box
132 \vtop to \baselineskip

133 {

134 \vbox_unpack_drop:N \1__codedoc_macro_box

135 \vss

136 }

__codedoc macro_typeset _one:nll

__codedoc_macro_reset:

__codedoc_macro_end:

139

140

}

\hspace{\labelsep}
\tagmcbegin{}
}

(End of definition for __codedoc_macro_dump:.)

The __codedoc_macro_typeset_one:nN command appends one macro name to the
\1__codedoc_macro_box. We have to add a structure. If we are on the outer level we
have to record the structure number. In the inner level we can use the existing structure.
As the structures are used in another place, we have to push/pop the mc.

11 \cs_set_protected:Npn __codedoc_macro_typeset_one:nN #1#2

142

143

144

146

147

164

165

{

}

\tag_mc_end_push:

\vb
{

}

ox_set:Nn \1__codedoc_macro_box

\vbox_unpack_drop:N \1__codedoc_macro_box
\int_compare:nNnTF { \1__codedoc_nested_macro_int } = { 1 }
{
\tagstructbegin{tag=macroname,stash}
\seq_gput_right:Ne
\g__codedoc_macroname_structnum_seq{\tag_get:n{struct_num}}
}
{
\tagstructbegin{tag=macroname,parent=\1__codedoc_current_names_struct_tl}
}
\tagmcbegin{}
\hbox { \llap { __codedoc_print_macroname:nN {#1} #2
\MacroFont \
+}
\tagmcend
\tagstructend

\tag_mc_begin_pop:n{}
\int_incr:N \1__codedoc_macro_int

(End of definition for __codedoc_macro_typeset_one:nN.)

As we have no nested lists, we need to ignore spaces explicitly

166 \cs_set_protected:Npn __codedoc_macro_reset:

167

168

169

170

{

}

\tl

_set:Nn \1__codedoc_override_module_tl { \q_no_value }

\ignorespaces

(End of definition for __codedoc_macro_reset:.)

\cs_set_protected:Npn __codedoc_macro_end:

{

\

codedoc_macro_end_check_tested:

\int_compare:nNnT \1__codedoc_nested_macro_int = 1

{

\par __codedoc_macro_end_style:n { __codedoc_print_end_definition: }
\end{displayblock}

178 }
179 ¥

(End of definition for __codedoc_macro_end:.)

2.7 The macrocode environment

\legacymacrocodesetup We want to base the environment on the new template code. This is a counterpart to
the \legacyverbatimsetup command in the latex-lab-block code.
150 \def\legacymacrocodesetup{’
151 \macro@font
152 \blank@linefalse \def\par{\ifblank@line
183 \leavevmode \else \fi

Similar to the case for verbatim we must group the \@@par so that we do not loose
indentation on the first line

184 \blank@linetrue{\@@par}

185 \penalty\interlinepenalty}
186 \obeylines

187 \@noligs

188 \let\do\@makeother \dospecials

189 \global\@newlistfalse

190 \global\@minipagefalse

191 \ifcodeline@index

192

103 \everypar{\global\advance\c@CodelineNo\@ne
194 \1llap{\tagmcend\tagstructbegin{tag=codelinenum}
195 \tagmcbegin{}

196 \theCodelineNo\pdffakespace

197 \tagmcend\tagstructend

198 \tagmcbegin{}%

199 \ %

200 \check@module},

201 \else \everypar{\check@modulel}/,

202 \fi

203 \tagtool{paratag=codeline}}, check tagging

204 }

(End of definition for \legacymacrocodesetup.)

blockenv macrocode (inst.)
205 \DeclareInstance{blockenv}{macrocode}{std}

206 {

207 name = macrocode,
208 tag-name = verbatim,
200 tag-attr-class =,

210 tagging-recipe = standard,
211 inner-level-counter = ,

212 transparent-level = true,

213 legacy-code =,

214 block-instance = verbatim ,
215 inner-instance =,

216 final-code = \legacymacrocodesetup ,
217 para-instance = justify,
218 tagging-suppress-paras = true

219 }

macrocode (env.)

20 \RenewDocumentEnvironment{macrocode}{!0{}}
21 {\SimpleBlockEnv{macrocode}

222 {begin-penalty = \predisplaypenalty,
223 begin-vspace = \MacrocodeTopsep,
224 left-margin = \MacroIndent,

225 para-indent =Opt,#1}

226 \@setupverbinvisiblespace

227 \init@crossref

228 \frenchspacing \@vobeyspaces

220 \xmacro@code

230 }

231 {

232 \ifpm@module \endgroup \pm@modulefalse \fi
233 \everypar{}

234 \BlockEnvEnd

235 \close@crossref

236 ¥

2.8 New doc elements

Various documentation elements are declare with the \NewDocElement command. Here
we patch the relevant commands to get tagged versions.

\@docQ@enve@
257 \long\def\@docQenve#1#2#3{Y

we setup a new role:

238 \tagpdfsetup{role/new-tag=#2/Sect}

239 \int_incr:N\1__codedoc_nested_macro_int

240 \int_compare:nNnF{\1__codedoc_nested_macro_int}>{1}
241 {\SimpleBlockEnv{displayblock}

242 {transparent-level=true,tag-name=#2,begin-vspace=\MacroTopsep}

A container for the function names.

243 \tagstructbegin{tag=macronames}

244 \tl_set:Ne \1__codedoc_current_names_struct_tl {\tag_get:n{struct_num}}
245 \tagstructend

246 }

27 \edef\saved@macroname{\string#3}/,

248 \if #19%

249 \edef\saved@indexname{\expandafter\Q@gobble\savedO@macroname},
250 \expandafter\ifx

251 \csname Code#2Index\endcsname

252 \CodeMacroIndex

253 \else

254 \record@index@type@save

255 {\saved@indexname}{#2}%

256 \fi

257 \else

258 \let\saved@indexname\saved@macroname

259 \fi

260 \def\makelabel##1{\noindent\1llapq{

261 \tagmcend

262 \tagstructbegin{tag=macroname,parent=\1__codedoc_current_names_struct_tl}

263 \tagmcbegin{}

264 ##1\hspace{\itemsep}

265 \tagmcend

266 \tagstructend

267 \tagmcbegin{}

268 i35

269 \int_compare:nNnTF{\1__codedoc_nested_macro_int}>{1}

270 {

271 \let\@tempa\@empty

272 \count@\macro@cnt

273 \loop\ifnum\count@>\z@

274 \edef\@tempa{\@tempa\hbox{\strut}}\advance\count@\m@ne
275 \repeat

276 \edef\makelabel##1{\noindent\1llap{

217 \tagmcend

278 \tagstructbegin{tag=macroname,parent=\1__codedoc_current_names_struct_tl}
279 \tagmcbegin{}

280 \vtop to\baselineskip{\@tempa\hbox{##1\kern\labelsep}\vss}
281 \tagmcend

282 \tagstructend

283 \tagmcbegin{}

284 }}%

285 \advance\macro@cnt\@ne

286 ¥

287 { \macro@cnt\@ne }

288 \ifdoc@noprint

289 \else

290 \edef\@tempa{%

201 \noexpand\makelabelq{

292 \noexpand\doc@providetarget

203 \noexpand\strut

204 \noexpand\@nameuse{Print#2Name}{\saved@macroname}}}/,
295 \@tempa

296 \fi

207 \ifdoc@noindex\else

298 \global\advance\c@CodelineNo\@ne

299 \csname SpecialMain#2Index\expandafter\endcsname

300 \expandafter{\saved@macroname}\nobreak

301 \global\advance\c@CodelineNo\m@ne

302 \fi

303 \if#1\expandafter\DoNotIndex \expandafter {\savedOmacroname}\fi
304 \ignorespaces}

(End of definition for \@doc@enva@.)

\doc@createenv We must use \BlockEnvEnd.

05 \def\doc@createenv#1#2#3{Y,

306 \@namedef{#3}{%

307 \@ifnextchar [%]

308 {\doc@env{#1}{#2}}{\doc@env{#1}{#2} [1}}%
500 \@namedef{end#3}{\BlockEnvEnd}%

310 }

(End of definition for \doc@createenv.)

w

\l@section

We must renew the environment doc element so that is uses the new code:

511 \RenewDocElement [macrolike = false ,

312 idxtype = env. ,

313 idxgroup = environments ,
314 printtype = \textit{env.}
. J{Env}{environment}

2.9 \maketitle

The doc package redefines \maketitle. So we have to reinstate the version from the title
module.

316 \cs_if_exist:NT __tag_patch_maketitle:

317 {

318 \cs_set_eq:NN \maketitle __tag_patch_maketitle:

30}

2.10 Sectioning commands and table of contents

\1@section must get the hooks:

320 \cs_gset:Npn \l@section #1#2

321 {

322 \ifnum \c@tocdepth >\z@

323 \addpenalty\@secpenalty

324 \addvspace{1.0em \@plus\p@}

325 \setlength\@tempdima{2.5em} % was 1.5em

326 \begingroup

327 \parindent \z@ \rightskip \@pnumwidth

328 \parfillskip -\@pnumwidth

329 \leavevmode \bfseries

330 \advance\leftskip\@tempdima

331 \hskip -\leftskip

332 \UseHookWithArguments{contentsline/text/before}{4}
333 {\toclevel@section}{#1}{#2}{\@contentsline@destination}y
334 \csname contentsline@text@l@format\endcsname{#1}
335 \UseHookWithArguments{contentsline/text/after}{4}

336 {\toclevel@chapter}{#1}{#2}{\@contentsline@destination}y,
337 \nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss

338 \UseHookWithArguments{contentsline/page/before}{4}

339 {\toclevel@section}{#1}{#2}{\@contentsline@destination}y,

340 #2

341 \UseHookWithArguments{contentsline/page/after}{4}

342 {\toclevel@section}{#1}{#2}{\@contentsline@destinationl}y
343 Hpar

344 \endgroup

345 \fi

346 3

(End of definition for \1@section.)

10

2.11 Support fancyvrb

13doc uses fancyvrb. As the block code redefines verbatim at begin document, we have
to overwrite that again:

s7 \AtBeginDocument

348 {

349 \cs_gset_eq:NN \verbatim \Verbatim

350 \cs_gset_eq:NN \endverbatim \endVerbatim
1}

s52 (/package)

11

	Contents
	1 Introduction
	2 implementation
	2.1 Declaration
	2.2 Tag and roles
	2.3 Variables
	2.4 The function enviroment
	2.5 The syntax environment
	2.6 The macro environment
	2.7 The macrocode environment
	2.8 New doc elements
	2.9 \maketitle
	2.10 Sectioning commands and table of contents
	2.11 Support fancyvrb

